92 documents found in 390ms
# 1
Falchi, Fabio • Cinzano, Pierantonio • Duriscoe, Dan • Kyba, Christopher C. M. • Elvidge, Christopher D. • (et. al.)
Abstract: These are maps of artificial night sky radiance that were produced by the Light Pollution Science and Technology Institute (ISTIL), and described in the paper "The New World Atlas of Artificial Night Sky Brightness" (Falchi et al. 2016). The data are stored in a 2.9 Gb geotiff file, on a 30 arcsecond grid. The map reports simulated zenith radiance data in [mcd/m^2]. The map is based on data from the VIIRS Day Night Band (DNB, MIller et al. 2013), which has been propagated through the atmosphere using the radiative transfer code reported in (Cinzano and Falchi, 2012). The upward emission function and the radiance calibration were obtained using data from Sky Quality Meters (including data from Duriscoe et al. 2007; Falchi 2010; Kyba et al 2013, 2015 and Zamorano et al. 2016). Note that the maps report artificial light only! The zenith radiance from natural sources such as stars and the Milky Way are not included, and must be added in order to match the data that would be obtained from an actual outdoor measurement. A kmz file for quick view of the data is also provided. Access to the FTP site to download the data can be requested via the data request form on the landing page. Version History:13 November 2019: change of the licence to CC BY NC 4.0 (after end of embargo period).
Artificial lights raise the night sky luminance, creating the most visible effect of light pollution, artificial sky glow. Despite the increasing interest among scientists in fields such as ecology, astronomy, healthcare, land use planning, light pollution lacks a current quantification of its magnitude on a global scale. To overcome this, here we present the World atlas of the artificial sky luminance, computed with our light pollution propagation software using new high resolution satellite data and new precision sky brightness measurements. This atlas shows that more than 80% of the World and more than 99% of the U.S.A. and Europe populations live under light polluted skies. The Milky Way is hidden for more than one third of humanity, including 60% of Europeans and nearly 80% of North Americans. Moreover, 23% of World's lands between 75°N and 60°S, 88% of Europe and almost half of U.S.A. experience light polluted nights.
# 2
Heidbach, Oliver • Rajabi, Mojtaba • Reiter, Karsten • Ziegler, Moritz • WSM Team
Abstract: The World Stress Map (WSM) database is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale. The WSM database release 2016 contains 42,870 data records within the upper 40 km of the Earth’s crust. The data are provided in three formats: Excel-file (wsm2016.xlsx), comma separated fields (wsm2016.csv) and with a zipped google Earth input file (wsm2016_google.zip). Data records with reliable A-C quality are displayed in the World Stress Map (doi:10.5880/WSM.2016.002). Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org. VERSION HISTORY:Version 1.1. (15 June 2019): updated version of the zip-compressed Google Earth .kml (wsm2016_google.zip) with a new URL of the server.
# 3
Heidbach, Oliver • Rajabi, Mojtaba • Reiter, Karsten • Ziegler, Moritz
Abstract: The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System.All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale. The stress map displays A-C quality stress data records of the upper 40 km of the Earth’s crust from the WSM database release 2016 (doi:10.5880/WSM.2016.001). Focal mechanism solutions determined as being potentially unreliable (labelled as Possible Plate Boundary Events in the database) are not displayed. Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at http://www.world-stress-map.org.
# 4
Heidbach, Oliver • Custodio, Susana • Kingdon, Andrew • Mariucci, Maria Theresa • Montone, Paola • (et. al.)
Abstract: The Stress Map of the Mediterranean and Central Europe 2016 displays 5011 A-C quality stress data records of the upper 40 km of the Earth’s crust from the WSM database release 2016 (Heidbach et al, 2016, http://doi.org/10.5880/WSM.2016.001). Focal mechanism solutions determined as being potentially unreliable (labelled as Possible Plate Boundary Events in the database) are not displayed. Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org.
The World Stress Map (WSM) is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale.
# 5
Förste, Christoph • Voigt, Christian • Abe, Maiko • Kroner, Corinna • Neumeyer, Jürgen • (et. al.)
Abstract: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy IAG. IGETS continues the activities of the Global Geodynamics Project (GGP) between 1997 and 2015 to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. As part of this network, the South African Geodynamic Observatory Sutherland (SAGOS) was established by the GFZ German Research Centre for Geosciences during the years 1998 and 2000 based on an Agreement on Cooperative Activities between the National Research Foundation (NRF) and GFZ signed in August 1998. Continuous time-varying gravity and atmospheric pressure data from the SGs at SAGOS are integrated in the IGETS data base hosted by GFZ. The SAGOS observatory is located at the site of the South African Astronomical Observatory (SAAO) approximately 350 km northeast of Cape Town (longitude: 20.81 E, latitude: 32.38 S, height above MSL: 1755 m). The operation and maintenance of the SAGOS instrumentation is jointly done by staff of SAAO and GFZ. The shortest distance to the South Atlantic coastline is approximately 200 km. The area is located in a tectonically quiet zone far away from the African rift. Geologically, the setting is a huge dolerite plateau with a several kilometres thick layer of dolerite. This bedrock allows a good coupling of the SG pillars to the ground. The environment is a remote area with no industry and low seismicity. The climate at this place is determined by the border between summer and winter rainfall zones so that temperature fluctuations are not too rough. The observatory is built into the ground to protect it against environmental effects like strong winds and temperature changes. All rooms are thermally insulated. An air-conditioning system controls the temperature inside the measurement chamber, which is equipped with three concrete pillars embedded into the dolerite bedrock. Two of the pillars are constructed for SGs or other geophysical instruments. The third pillar is dedicated for absolute gravimeters for the calibration of the SGs. In the vicinity of the observatory four further pillars were set up for various other geodetic antennas and instrumentation. SAGOS is a high precision geodynamic observatory comprising space techniques and ground instruments. Presently, the observatory is equipped with one SG manufactured by GWR Instruments (SG D037). The second SG operating in parallel until September 2017 was installed at mountain Zugspitze in September 2018 (Voigt et al. 2019, http://doi.org/10.5880/igets.zu.l1.001). The time series of gravity and barometric pressure from the dual sensor gravimeter SG D037 starts in February 2000 and is interrupted from July 2008 to November 2009 due to an upgrade of the electronics package. The time series of SG 052 begins in August 2008 and ends in September 2017 without interruption. The SG D037 is active and the time series is kept up to date regularly with a time delay of a few months. The time sampling of the raw gravity and barometric pressure data of IGETS Level 1 is 1 minute. Starting in January 2016, raw data with a time sampling of 1 second is provided additionally. For a detailed description of the IGETS data base and the provided files see Voigt et al. (2016, http://doi.org/10.2312/GFZ.b103-16087). In addition, SAGOS is equipped with auxiliary data supporting the interpretation of the SG measurements, which is, however, not provided in the IGETS data base due to their complexity. These are a local network of hydrological and meteorological sensors as well as a permanent GNSS (Global Navigation Satellite Systems) station as a core station of the International GNSS Service (IGS) with the ID SUTM.
# 6
Vey, Sibylle • Güntner, Andreas • Wickert, Jens • Blume, Theresa • Thoss, Heiko • (et. al.)
Abstract: We provide data of a case study from the GNSS station Wettzell, Germany (WTZR). This data set contains snow depth derived from GNSS data using reflectometry. It covers a time period from July 1, 2012 to July 1, 2015 and gives the integral snow depth over an area of about 150 by 30 m. The data are daily averages based on daily measurements from 4 different satellites. The GNSS derived snow depth was validated by observations from ultrasonic sensors (US). The detailed description of the processing, the evaluation with US and the discussion of the results is described in Vey et al. (2016). The data are provided in ASCII format with four colums: GNSS data (file Vey-et-al-2016-GNSS_2012_15.txt): (1) year (YEAR) (2) day of the year (DOY) (3) snow depth (SD cm) from GNSS (4) accuracy, root mean square error (RMSE cm) Ultrasonic Sensor data (file Vey-et-al-2016-US_2012_15..txt): (1) year (YEAR) (2) day of the year (DOY) (3) SD_US_pillow (cm) snow depth from the US sensor located above snow pillow (4) SD_US_SPA(cm) snow depth from the US sensor located at the snow pack analyzer
# 7
Lange, Stefan
Abstract: The EWEMBI dataset was compiled to support the bias correction of climate input data for the impact assessments carried out in phase 2b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b; Frieler et al., 2017), which will contribute to the 2018 IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. The EWEMBI data cover the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2013. Data sources of EWEMBI are ERA-Interim reanalysis data (ERAI; Dee et al., 2011), WATCH forcing data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014), eartH2Observe forcing data (E2OBS; Calton et al., 2016) and NASA/GEWEX Surface Radiation Budget data (SRB; Stackhouse Jr. et al., 2011). The SRB data were used to bias-correct E2OBS shortwave and longwave radiation (Lange, 2018). Variables included in the EWEMBI dataset are Near Surface Relative Humidity, Near Surface Specific Humidity, Precipitation, Snowfall Flux, Surface Air Pressure, Surface Downwelling Longwave Radiation, Surface Downwelling Shortwave Radiation, Near Surface Wind Speed, Near-Surface Air Temperature, Daily Maximum Near Surface Air Temperature, Daily Minimum Near Surface Air Temperature, Eastward Near-Surface Wind and Northward Near-Surface Wind. For data sources, units and short names of all variables see Frieler et al. (2017, Table 1).
# 8
Rudenko, Sergei • Schöne, Tilo • Neumayer, Karl-Hans • Esselborn, Saskia • Raimondo, Jean-Claude • (et. al.)
Abstract: The data set provides GFZ VER11 orbits of altimetry satellites ERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005), derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below. The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2017)
# 9
Förste, Christoph • Bruinsma, Sean • Abrikosov, Oleh • Rudenko, Sergiy • Lemoine, Jean-Michel • (et. al.)
Abstract: EIGEN-6S4 (Version 2) is a satellite-only global gravity field model from the combination of LAGEOS, GRACE and GOCE data. All spherical harmonic coefficients up to degree/order 80 are time variable. Their time variable parameters consist of drifts as well as annual and semi-annual variations per year. The time series of the time variable spherical harmonic coefficients are based on the LAGEOS-1/2 solution (1985 to 2003) and the GRACE-LAGEOS monthly gravity fields RL03-v2 (August 2002 to July 2014) from GRGS/Toulouse (Bruinsma et al. 2009). The herein included GRACE/LAGEOS data were combined with all GOCE data which have been processed via the direct numerical approach (Pail et al. 2011). The polar gap instabilty has been overcome using the Sperical Cap Regularization (Metzler and Pail 2005). That means this model is a combination of LAGEOS/GACE with GO_CONS_GCF_2_DIR_R5 (Bruinsma et al. 2013). Version History: This data set is an updated version of Foerste et al. (2016, http://doi.org/10.5880/icgem.2016.004) Compared to the first version, EIGEN-6S4v2 contains an improved modelling of the time variable part, in particular for C20.
# 10
Reiter, Karsten • Kukowski, Nina • Ratschbacher, Lothar • Rosenau, Matthias
Abstract: This data publication includes animations and figures of eight scaled analogue models that are used to investigate the evolution of a curved mountain belt akin to the Pamir and Hindu Kush orogenic system and adjacent Tadjik basin. Crustal deformation is simulated by means of indentation of two basement blocks into a sedimentary sequence and the formation of a curved fold-and-thrust belt.The experimental set-up has two adjacent rigid indenters representing the basement blocks moving in parallel with a velocity difference (Figure 1). The slow indenter moves with a relative velocity ranging from 40 to 80% of that of the fast one. A layer of quartz sand in front of the indenters, 1 by 1 meter in size and 1.5 cm thick, represents the sedimentary basin infill. A basal detachment layer is made up of low-friction glass beads or viscous silicone oil representing weak shale or evaporates layers, respectively. The surface evolution by means of topography and strain distribution is derived from 3-D particle image velocimetry (PIV). This allows visualizing and analysing the development of the model surface during the complete model run at high spatio-temporal resolution. All details about the model set-up, modelling results and interpretation can be found in Reiter et al. (2011).The here provided additional material includes time-lapse movies showing the topographic evolution of the eight models. These visualizations are oblique views played back at 60-fold velocity for the “glass beads experiments” (gb40 to gb80) and 3600-fold velocity for the “silicone experiments” (si60, si-gb60).In addition to the experiment movies we provide a set of figures. The figures include surface views as well as cross-sections through the finite models highlighting the link between topography and internal structure of the simulated curved fold-and-thrust belts. Additionally, attribute maps of distinct morphometric measures (curvature, slope) and deformation parameters (uplift, horizontal translation) for the experiments with glass beads detachments are given. Finally, the movie “Experimenting.avi” shows in time-lapse the whole workflow of setting up, conducting and documenting an experiment, which originally required three days (for experiment si-gb60).An overview on the parameters used in the experimental series of the movie sequences is given in the explanatory file (Explanations_Reiter-et-al-2016.pdf). A full list of files is given in “list-of-files-Reiter-et-al-2016.pdf”.
spinning wheel Loading next page