92 documents found in 421ms
# 1
Rosenau, Matthias • Corbi, Fabio • Dominguez, Stephane • Rudolf, Michael • Ritter, Malte • (et. al.)
Abstract: This data set contains various data derived from rock and rock analogue testing and analogue models which are presented in Rosenau et al. (2016) to which these data are supplement to..A first group of data contains animations of complementary analogue and numerical models of subduction zone earthquake cycles (A). A second group comprises analogue earthquake data and time series of surface deformation derived from scale models of subduction zone earthquake cycles (B). A third group consist of time series of stick-slip experiments using a ring shear tester (C). Finally, friction data both from rocks and rock analogue materials (D) as well as elasticity data from rock analogues are presented (E).See the Description of data and the List of files in the Data Download section for additional data description.
# 2
Reiter, Karsten • Kukowski, Nina • Ratschbacher, Lothar • Rosenau, Matthias
Abstract: This data publication includes animations and figures of eight scaled analogue models that are used to investigate the evolution of a curved mountain belt akin to the Pamir and Hindu Kush orogenic system and adjacent Tadjik basin. Crustal deformation is simulated by means of indentation of two basement blocks into a sedimentary sequence and the formation of a curved fold-and-thrust belt.The experimental set-up has two adjacent rigid indenters representing the basement blocks moving in parallel with a velocity difference (Figure 1). The slow indenter moves with a relative velocity ranging from 40 to 80% of that of the fast one. A layer of quartz sand in front of the indenters, 1 by 1 meter in size and 1.5 cm thick, represents the sedimentary basin infill. A basal detachment layer is made up of low-friction glass beads or viscous silicone oil representing weak shale or evaporates layers, respectively. The surface evolution by means of topography and strain distribution is derived from 3-D particle image velocimetry (PIV). This allows visualizing and analysing the development of the model surface during the complete model run at high spatio-temporal resolution. All details about the model set-up, modelling results and interpretation can be found in Reiter et al. (2011).The here provided additional material includes time-lapse movies showing the topographic evolution of the eight models. These visualizations are oblique views played back at 60-fold velocity for the “glass beads experiments” (gb40 to gb80) and 3600-fold velocity for the “silicone experiments” (si60, si-gb60).In addition to the experiment movies we provide a set of figures. The figures include surface views as well as cross-sections through the finite models highlighting the link between topography and internal structure of the simulated curved fold-and-thrust belts. Additionally, attribute maps of distinct morphometric measures (curvature, slope) and deformation parameters (uplift, horizontal translation) for the experiments with glass beads detachments are given. Finally, the movie “Experimenting.avi” shows in time-lapse the whole workflow of setting up, conducting and documenting an experiment, which originally required three days (for experiment si-gb60).An overview on the parameters used in the experimental series of the movie sequences is given in the explanatory file (Explanations_Reiter-et-al-2016.pdf). A full list of files is given in “list-of-files-Reiter-et-al-2016.pdf”.
# 3
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides compaction data from axial testing on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by uniaxial, confined compression testing using the Axial Tester at GFZ Potsdam’s analogue laboratory for tectonic modelling . Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the container (jar). Up to 2000 kPa of uniaxial compression has been applied in 50 cycles. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting stress curve data are presented at 20 Hz frequency and the Unit of N. From the stress curves the compaction data have been derived. These correspond to the normalized sample height (normalized to the initial height) of the sample at the beginning of each cycle and are characterized by an exponential decrease over the 50 cycles. From that the following compaction parameters are derived: total compaction (shortening after 50 cycles Ct=eps50), the compaction during the first cycle (eps1) as well as the compaction index (Ci = eps1/eps50). Compaction data are finally visualized in the compactionDataPlot file.Each material sample has a relation to three files: stress curve data (txt format, 50 files per sample), compaction data (in xls and txt format), compaction plot (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table CompactionDataOverview.xls.
# 4
Ritter, Malte Christian • Leever, Karen • Rosenau, Matthias • Oncken, Onno
Abstract: The dataset presented here contains the results of mechanical testing of two granular materials (quartz sand and glass micro beads) that are commonly used in analogue tectonic experiments. The data were acquired using a ring-shear tester RST-01.pc [Schulze, 1994]. Tests were performed at different normal loads ranging from 125 Pa to 4000 Pa and with eight to ten repetitions per normal load and material. The parameters measured are: rotation velocity, shear stress, normal load and sample dilation, all as a function of time. A detailed analysis and interpretation of the data can be found in the main article of [Ritter et al., 2016].The data were measured in the ring-shear tester RST-01.pc [Schulze, 1994, see below] at GFZ Potsdam’s analogue laboratory for tectonic modelling. All samples have been prepared and measured by the same person. Preparation was by sifting from a constant height of 30 cm into the shear cell. Tests were performed at different normal loads ranging from 125 Pa to 4000 Pa and with eight to ten repetitions per normal load and material. For normal loads below 500 Pa, the samples were pre-loaded by shortly increasing the normal load to 500 Pa and then resetting it to the desired value prior to the onset of deformation. This pre-loading was carried out for technical reasons. Preliminary tests at a normal load of 300 Pa have shown that this does not affect the strength.The data are presented as shear curves in tab-separated text files. The file names consist of (in this order) material, normal load and a running number. Each file contains one shear curve and consists of a header describing the individual measurements followed by a table with one column per parameter (read more in the dataset description pdf).References:Schulze, D. (1994) Entwicklung und Anwendung eines neuartigen Ringschergerätes, Aufbereitungstechnik, 35(10), 524–535.
# 5
Klinkmüller, Matthias • Kemnitz, Helga • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides images from scanning electron microscope (SEM) photography of natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by using the scanning electron microscope facility at GFZ Potsdam. The selected grains were mounted on aluminium stubs supplied with conductive carbon tabs and gold-palladium coated. The study was performed using a ZEISS DSM 692 (in 2008) and (in 2009) a ZEISS ULTRA 55 Plus Schottky-type field emission scanning electron microscope (FESEM) at acceleration voltages from 7 to 20 kV. In both cases, we used the secondary (SE) electron signals providing the best spatial resolution of the sample morphology.The resulting SEM images are presented. From each sample several magnifications are provided ranging from overview (50x-100x) to particle portraits (100x-500x) and, for glass beads, to surface landscapes (500x-10.000x).
An overview of all files of the data set is given in the table SEMDataOverview.
# 6
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides sieve data (grain size distributions) on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by sieving using a RETSCH Vibratory Sieve Shaker AS 200 basic at GFZ Potsdam’s analogue laboratory for tectonic modelling. Mesh sizes used were 630, 400, 355, 224, 125, and 63 micrometer. 1 kg of each sample material has been sieved for 4 hours at maximum Amplitude (3 mm). Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting sieve analysis data are presented as fractions of 1 kg.
An overview of all files of the data set is given in the table SieveDataOverview.
# 7
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides friction data from ring shear test (RST) on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994) at GFZ Potsdam’s analogue laboratory for tectonic modelling. Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the shear cell. Measurements have been done at normal loads (normal stress) of 430, 860, 1290, 1720, and 2150 Pa and shear velocity of 3 mm/min typical of experimental conditions. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%). The measurements presented here correspond to internal friction, shearing inside the material. Data for so-called basal or wall friction, i.e. shearing against a fixed plate, are available on request.The resulting shear stress curves are presented at 5 Hz frequency and the Unit of Pa. From the shear stress curves the friction data, i.e. peak, dynamic and reactivation friction, have been picked manually and are presented as data pairs (normal stress & respective shear strength). Matlab-based regression analysis of these friction data by means of (a) multilinear regression of all data pairs and (b) mutual regression of two data pairs constrains the material shear failure envelope characterized by friction coefficient (slope of regression line) and cohesion (y-axis intercept of regression line). The results are presented by friction plots.
Each material sample corresponds to three files: shear stress curves (xls/txt format), friction data (txt format), friction plots (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table RSTDataOverview.
Cited reference: Schulze, D. (1994), Entwicklung und Anwendung eines neuartigen Ringschergerätes. Aufbereitungstechnik 35 (10), 524-535.
# 8
Rudolf, Michael • Boutelier, David • Rosenau, Matthias • Schreurs, Guido • Oncken, Onno
Abstract: The datasets that are presented here have been obtained to provide a rheological benchmark of silicones used in various analog modeling laboratories. The data contains rheological measurements of several polydimethylsiloxanes (PDMS) and filled silicone oils. The samples of eight different silicone oils originate from seven laboratories. Each sample was analyzed using rotational controlled shear rate tests (CSR), temperature sweep test, and dynamical oscillation tests (amplitude and frequency sweeps). Detailed information on the analysis and interpretation of the data is found in Rudolf, et al. (2016).The data is provided as comma-separated files in *.csv format. Each file contains multiple measurements, each starting with own data series information that is followed by the actual measurement in the form of a table including the individual units of measure. Furthermore the results from ReSpect (Takeh & Shanbhag, 2013) for the discrete Maxwell relaxation spectra are provided. All files can be opened using a text-editor, MS Excel, or equivalent software.More information about the datasets is available in the file Explanations_Rudolf-et-al-2016.pdf, an overview on the available files in the List_of_Files_Rudolf-et-al-2016 (in .pdf and .xlsx format). All information and overview files are also included in Rudolf-et-al-2016_datasets.zip.
# 9
Mayer-Gürr, Torsten • Behzadpour, Saniya • Ellmer, Matthias • Kvas, Andreas • Klinger, Beate • (et. al.)
Abstract: The ITSG-Grace2016 gravity field model is the latest GRACE only gravity field model computed at Graz University of Technology, providing unconstrained monthly and Kalman smoothed daily solutions. It covers the whole GRACE time span from 2002-04 and will be continually updated. For each month of the observation period, sets of spherical harmonic coefficients for different maximum degrees (60, 90, 120) were estimated without applying any regularization. In order to resolve daily gravity field variations as detailed as possible, a set of spherical harmonic coefficients up to degree and order 40 was estimated using the Kalman smoother estimation procedure introduced by Kurtenbach et al. 2012.K-band range rates with a sampling of 5 seconds and kinematic orbits with a sampling of 5 minutes were used as observations. The kinematic orbits of the GRACE satellites (Zehentner and Mayer-Gürr 2013, 2014) were processed using the GPS orbits and clock solutions provided by IGS. An improved attitude product derived from a combination of star camera data and angular accelerations (Klinger and Mayer-Gürr 2014) was used to estimate K-band antenna center variations (one set per month). Additionally, accelerometer scale factors were estimated per axis and day. The accelerometer bias was modelled through cubic splines with a node interval of six hours and estimated for each axis and day. Detailed information about ITSG-Grace2016 is available at http://ifg.tugraz.at/ITSG-Grace2016.
# 10
Heidbach, Oliver • Rajabi, Mojtaba • Reiter, Karsten • Ziegler, Moritz • WSM Team
Abstract: The World Stress Map (WSM) database is a global compilation of information on the crustal present-day stress field. It is a collaborative project between academia and industry that aims to characterize the stress pattern and to understand the stress sources. It commenced in 1986 as a project of the International Lithosphere Program under the leadership of Mary-Lou Zoback. From 1995-2008 it was a project of the Heidelberg Academy of Sciences and Humanities headed first by Karl Fuchs and then by Friedemann Wenzel. Since 2009 the WSM is maintained at the GFZ German Research Centre for Geosciences and since 2012 the WSM is a member of the ICSU World Data System. All stress information is analysed and compiled in a standardized format and quality-ranked for reliability and comparability on a global scale. The WSM database release 2016 contains 42,870 data records within the upper 40 km of the Earth’s crust. The data are provided in three formats: Excel-file (wsm2016.xlsx), comma separated fields (wsm2016.csv) and with a zipped google Earth input file (wsm2016_google.zip). Data records with reliable A-C quality are displayed in the World Stress Map (doi:10.5880/WSM.2016.002). Further detailed information on the WSM quality ranking scheme, guidelines for the various stress indicators, and software for stress map generation and the stress pattern analysis is available at www.world-stress-map.org.
spinning wheel Loading next page