122 documents found in 400ms
# 1
Beekman, Fred • Willingshofer, Ernst • Sokoutis, Dimitrios • Pueyo, Emilio Luis • Casas, Antonio M. • (et. al.)
Abstract: This dataset provides friction data from ring-shear tests (RST) on an iron powder – quartz sand mixture (weight ratio 1:3). This material is used in particular as marker material in analogue experiments that are monitored with CT-scanners in the Tectonic Laboratory (TecLab) at Utrecht University (NL) (Pueyo et al., 2017; 2018). The material has been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam in the framework of the EPOS (European Plate Observing System) Transnational Access (TNA) call of the Thematic Core Service (TCS) Multi-scale Laboratories (MSL) in 2017. According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients are µP = 0.65, µD = 0.53, and µR = 0.62, respectively. Cohesions C are in the range of 70 to 100 Pa. A minor rate-weakening of ~3% per ten-fold change in shear velocity v is evident.
# 2
Deng, Bin • Schönebeck, Jan • Warsitzka, Michael • Rosenau, Matthias
Abstract: This dataset provides friction data from ring-shear tests (RST) on natural and artificial granular materials used for analogue modelling in the experimental laboratory of the Chengdu University of Technology (CDUT, China). Six samples, four types of quartz sands and two types of glass beads, have been characterized by means of friction coefficients µ and cohesions C. The material samples have been analysed at the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam in the framework of the EPOS (European Plate Observing System) Transnational Access (TNA) call of the Thematic Core Service (TCS) Multi-scale Laboratories (MSL) in 2017 as a remote service for the CDUT. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of the quartz sand samples range between 0.62 and 0.79 and µP of the glass beads between 0.61 and 0.64. Except for one quartz sand sample, peak cohesions CP of all materials are smaller than or around zero meaning that these materials are cohesionsless. All materials show a minor rate-weakening of 1-2 % per ten-fold change in shear velocity v.
# 3
Willingshofer, Ernst • Sokoutis, Dimitrios • Kleinhans, Maarten • Beekmann, Fred • Schönebeck, Jan-Michael • (et. al.)
Abstract: This dataset provides friction data from ring-shear test (RST) on a plastic (polyester) sand material that has been used in flume experiments (Marra et al., 2014; Kleinhans et al., 2017) and is now used in the Tectonic Laboratory (TecLab) at Utrecht University (NL) as an analogue for brittle layers in the crust or lithosphere. Detailed information about the data, methodology and a list of files and formats is given in the data description and list of files that are included in the zip folder and also available via the DOI landing page. The material has been characterized by means of internal friction coefficient and cohesion as a remote service by GFZ Potsdam for TecLab (Utrecht University). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of 0.76, 0.60, and 0.66, respectively. Cohesions are in the order of few tens of Pa. A minor rate-weakening of 3% per ten-fold rate change is evident.
# 4
Warsitzka, Michael • Ge, Zhiyuan • Schönebeck, Jan-Michael • Pohlenz, Andre • Kukowski, Nina
Abstract: This dataset provides friction data from ring-shear tests (RST) for two types of foam glass beads and a mixture of foam glass beads with quartz sand (“G12”; Rosenau et al., 2019). These materials have been used in analogue experiments in Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam and in the Analogue laboratory of the Institute of Geosciences of the Friedrich Schiller University of Jena (FSU Jena). The materials have been characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of all tested materials range between 0.70 and 0.75, dynamic friction coefficients µD between 0.52 and 0.55 and reactivation friction coefficients µR between 0.60 and 0.62. Peak cohesions CP of all materials are negative indicating that they are cohesionless. All materials show a minor rate-weakening of ~1% per ten-fold change in shear velocity v. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 5
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (“G12”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust. The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.69, µD = 0.55 and µR = 0.62, respectively. Cohesions C are in the order of 50 – 110 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 6
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (type “G23”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust (e,g. Kenkmann et al., 2007; Contardo et al., 2011; Reiter et al., 2011;Warsitzka et al., 2013; Santimano,et al., 2015; Warsitzka et al., 2015; Ritter et al., 2016; 2018 a,b). The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.73, µD = 0.57 and µR = 0.65, respectively. Cohesions C are in the order of 10 – 120 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity v. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 7
Warsitzka, Michael • Závada, Prokop • Pohlenz, Andre • Rosenau, Matthias
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand used in analogue experiments at the Institute of Geophysics of the Czech Academy of Science (IGCAS) (Kratinová et al., 2006; Zavada et al., 2009; Lehmann et al., 2017; Krýza et al., 2019). It is characterized by means of internal friction coefficients µ and cohesion C. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak friction coefficients µP of the tested material is ~0.75, dynamic friction coeffi-cients µD is ~0.60 and reactivation friction coefficients µR is ~0.64. Cohesions of the material range between 90 and 130 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity v.
# 8
Zwaan, Frank • Schreurs, Guido • Ritter, Malte • Santimano, Tasca • Rosenau, Matthias
Abstract: This dataset provides rheometric data of silicone (Polydimethylsiloxane, PDMS SGM36)-corundum sand mixtures used for analogue modelling in Zwaan et al. (2016, 2017), Zwaan and Schreurs (2017) and in the Tectonic Modelling Lab of the Institute of Geological Sciences at the University of Bern (CH). The PDMS is produced by Dow Corning and its characteristics have been described by e.g. Rudolf et al. (2016a,b). The corundum sand (Normalkorund Braun 95.5% F120 by Carlo Bernasconi AG: https://www.carloag.ch/shop/catalog/product/view/id/643), has a grainsize of 0.088-0.125 mm and a specific density of 3.96 g cm^-3. Further rheological characteristics are described by Panien et al. (2006). The density of the tested materials ranges between 1 (pure PDMS) and 1.6 g cm^-3 (increasing corundum sand content in mixture). The material samples have been analysed in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at GFZ German Research Centre for Geosciences in Potsdam using an Anton Paar Physica MCR 301 rheometer in a plate-plate configuration at room temperature. Rotational (controlled shear rate) tests with shear rates varying from 10^-4 to 10^-1 s^-1 were performed. According to our rheometric analysis, the material is quasi Newtonian at strain rates below 10^-3*s^-1 and weakly shear rate thinning above. Viscosity and stress exponent increase systematically with density from ~4*10^4 to ~1*10^5 Pa*s and from 1.06 to 1.10, respectively. A first application of the materials tested can be found in Zwaan et al. (2016). Detailed information about the data, methodology and a list of files and formats is given in the "data description" and "list of files" that are included in the zip folder and also available via the DOI landing page.
# 9
Zwaan, Frank • Schreurs, Guido • Gentzmann, Robert • Warsitzka, Michael • Rosenau, Matthias
Abstract: This dataset provides internal and basal (wall) friction data from ring-shear tests (RST) on a quartz sand material that has been used in tectonic experiments in Zwaan et al. (2016, 2017), Zwaan and Scheurs (2017) and in the Tectonic Modelling Lab of the University of Bern (CH) as an analogue for brittle layers in the crust or lithosphere. The material has been characterized by means of internal and basal friction coefficients μ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for the Tectonic Modelling Lab of the University of Bern (UB). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope. Internal peak, dynamic and reactivation friction coefficients are μP = 0.73, μD = 0.61, and μR = 0.66, respectively. Internal cohesions C are in the range of 10 to 70 Pa. Basal peak, dynamic and reactivation friction coefficients are μP = 0.41, μD = 0.35, and μR = 0.36, respectively, whereas basal cohesions C are in the range of 120 to 150 Pa. The rate dependency of the internal dynamic friction coefficient is insignificant (<1%).
# 10
Román-Berdiel, Teresa • Casas, Antonio M. • Pueyo, Emilio Luis • Peiro Chamarro, Alba • Soto, Ruth • (et. al.)
Abstract: This dataset provides friction data from ring-shear tests (RST) on different types of quartz sand used in the Laboratorio de modelización analógica of the Universidad de Zaragoza (UZ, Spain) as an analogue for brittle layers in the crust or lithosphere (Izquierdo-Llavall & Casas-Sainz, 2012; Calvín et al., 2013; Pueyo Anchuela et al., 2016; Peiro et al., 2018; Pueyo et al., 2018; Izquierdo-Llavall et al., submitted). The materials (quartz sand, green coloured quartz sand mixture, black coloured quartz sand) have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Friction coefficients of the pure quartz sand and the green quartz sand mixture are similar (µP = 0.74 – 0.76, µD = 0.56 – 0.60, µR = 0.61 – 0.64), whereas friction coefficients of the black coloured quartz sand are lower (µP = 0.48, µD = 0.39, µR = 0.45). Cohesions of all sands range between 40 and 150 Pa. A minor rate-weakening of ~1 % per ten-fold change in shear velocity v is evident. The tested materials are quartz sands with a grain size of 0.063 – 0.4 mm and bulk densities of ρ = 1610-1800 kg m^-3. The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at the Helmholtz Laboratory for Tectonic Modelling (HelTec) of the GFZ German Research Centre for Geosciences in Potsdam. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures and shear velocities similar to sandbox experiments.
spinning wheel Loading next page