464 documents found in 355ms
# 1
Sakic, Pierre • Mansur, Gustavo • Chaiyaporn, Kitpracha • Ballu, Valérie
Abstract: Operations such as time and coordinate conversions and data cleaning are routine tasks in geodesy and geophysics. Nevertheless, simple and efficient high-level functions to help those kinds of jobs are barely available, and has to be developed, again and again, by each student, engineer for each new project, and even by senior scientists. On another hand, Python became little by little within the last decade a well-used programming language in the academic world. Despite the fact that countless toolboxes already exist in Python for scientific purposes, none really exists for geodetic-oriented purposes. The geodeZYX toolbox aims to fill this gap. The objective of this toolbox, written in Python 3, is to provide a simple but useful and efficient set of functions to help geodesists and geophysicists to spend less time on the pre-processing steps and focus faster on their research, according to the KISS Principle. A static version of the geodeZYX toolbox is available via the "Files" section on this DOI Landing Page and via github (https://github.com/GeodeZYX/GeodeZYX-Toolbox_v4).
# 2
Koellner, Nicole • Koerting, Friederike • Horning, Marcel • Mielke, Christian • Altenberger, Uwe
Abstract: The data set contains mineral chemical analyses of 20 different copper bearing minerals and their corresponding hyperspectral spectra. The hyperspectral data were acquired with the HySpex system in a range of 400 – 2500 nm and are presented in a spectral library. Detailed information about the mineral specimen, sample area and geochemistry is presented in the data sheets and associated data description. The spectral library presented here is part of a bigger collection of spectral libraries including samples from rare-earth minerals, rare-earth-oxides (Koerting et al., 2019a, http://doi.org/10.5880/GFZ.1.4.2019.004) and field samples from a copper-gold-pyrite mine in the Republic of Cyprus (Koerting et al., 2019b, http://doi.org/10.5880/GFZ.1.4.2019.005).
# 3
Koerting, Friederike • Herrmann, Sabrina • Boesche, Nina Kristin • Rogass, Christian • Mielke, Christian • (et. al.)
Abstract: The data set contains mineral chemical analyses of 32 rare earth element (REE) -bearing minerals (REMin) and rare-earth oxides (REO) and their corresponding hyperspectral spectra. The hyperspectral data was acquired with the HySpex system in a range of 400 – 2500 nm and is presented in a spectral library. The two Rare Earth Element (REE) libraries consist of the spectra of 16 rare earth oxides powders (REO) and 14 REE-bearing minerals (REMin). In addition, it contains the spectra of niobium- and tantalum oxide, two elements technically not part of the REEs. The spectral library presented here is part of a bigger collection of spectral libraries including copper-bearing surface samples from Apliki copper-gold-pyrite mine (Koerting et al., 2019a, http://doi.org/10.5880/GFZ.1.4.2019.005) and copper-bearing minerals (Koellner et al., 2019, http://doi.org/10.5880/GFZ.1.4.2019.003). These libraries aim to give a spectral overview of important resources and ore mineralization.
# 4
Koerting, Friederike • Rogass, Christian • Koellner, Nicole • Kuras, Agnieszka • Horning, Marcel • (et. al.)
Abstract: The data set contains mineral chemical analyses of 37 different surface materials from the copper-gold-pyrite mine Apliki in the Republic of Cyprus and their corresponding hyperspectral spectra. The field samples were sampled in March 2018 in cooperation of the Cyprus Geological Survey Department of the Republic of Cyprus (GSD) and the German Research Centre for Geosciences (GFZ). The hyperspectral data was acquired with the HySpex system in a range of 400 – 2500nm and is presented in a spectral library. Detailed information about the mineral specimen, sample area and geochemistry is presented in the data sheets. The spectral library presented here is part of a bigger collection of spectral libraries including samples from rare-earth minerals, rare-earth-oxides (Koerting et al., 2019a, http://doi.org/10.5880/GFZ.1.4.2019.004) and copper-bearing minerals (Koellner et al., 2019, http://doi.org/10.5880/GFZ.1.4.2019.003).
# 5
Encarnacao, Joao • Visser, Pieter • Jaeggi, Adrian • Bezdek, Ales • Mayer-Gürr, Torsten • (et. al.)
Abstract: Although the knowledge of the gravity of the Earth has improved considerably with CHAMP, GRACE and GOCE satellite missions, the geophysical community has identified the need for the continued monitoring of its time-variable component with the purpose of estimating the hydrological and glaciological yearly cycles and long-term trends. Currently, the GRACE-FO satellites are the sole provider of this data, while previously the GRACE mission collected these data for 15 years. Between the GRACE and GRACE-FO data periods lies a gap spanning from July 2017 to May 2018, while the Swarm satellites have collected gravimetric data with its GPS receivers since December 2013. This project aims at providing high-quality gravity field models from Swarm data that constitute an alternative and independent source of gravimetric data, which could help alleviate the consequences of the 10-month gap between GRACE and GRACE-FO, as well as the short gaps in the existing GRACE and GRACE-FO monthly time series. The geodetic community has realized that the combination of the different gravity field solutions is superior to any individual model. This project exploits this fact and delivers to the highest quality monthly-independent gravity field models, resulting from the combination of 4 different gravity field estimation approaches. All solutions are unconstrained and estimated independently from month to month. Preliminary comparison with GRACE data has demonstrated that the signal in the Swarm gravity field models is restricted to degrees 12-15 and below, while the temporal correlations decrease considerably above degree 10. The 750km smoothed models are suitable to retrieve the global annual temporal variations of Earth's gravity field and the agreement with GRACE over large basins (e.g. Amazon, Congo-Zambezi, Ganges-Brahmaputra) is within 1cm RMS in terms of Equivalent Water Height. The global RMS relative to a bias, trend, an annual and semi-annual model derived from GRACE over deep ocean areas (those roughly 1000km from shorelines) is under 1mm geoid height during periods of low ionospheric activity. More information about this project can be found at https://www.researchgate.net/project/Multi-approach-gravity-field-models-from-Swarm-GPS-data and ESA's Swarm DISC (the Data, Innovation and Science Cluster) Website (https://earth.esa.int/web/guest/missions/esa-eo-missions/swarm/activities/scientific-projects/disc#MAGF). This project is funded by ESA via the Swarm DISC, Sub-Contract No. SW-CO-DTU-GS-111.
# 6
Rother, Martin • Michaelis, Ingo
Abstract: Electron density and electron temperature time series from 'LEO' satellite 'CHAMP' for the CHAMP mission period at satellite position in low time resolution of 15 second and given in daily files. This are processed readings from the Planar Langmuir probe, which, in normal flight mode, was exposed in flight direction at the front of the `CHAMP' satellite body. The files are formatted as simple 'ASCII'-listings with white-space delimited columns. The full product and format descriptions are provided in the associated Scientific Technical Report - Data (GFZ Section 2.3, 2019. http://doi.org/10.2312/GFZ.b103-19104).
CHAMP (CHAllenging Minisatellite Payload) was a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ . With its highly precise, multifunctional and complementary payload elements (Overhauser scalar magnetometer (OVM) and Fluxgate vector magnetometer (FGM), accelerometer, star sensor (ASC), GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP generated highly precise gravity and magnetic field measurements simultaneously for the first time and over a 10 years period. CHAMP launched by a Russian COSMOS launch vehicle on July 15, 2000 and an initial altitude of 454 km. The mission ended on September 19 2010 after ten years, two month and four days, or after 58277 orbits.
# 7
Rother, Martin • Michaelis, Ingo
Abstract: This is a Level 3 data daily file product from various scientific and utility sensors on board of the `LEO' satellite 'CHAMP' with magnetic field data given by a time resolution of 1 Hz. Thise Level 3 data type is build to hold and merge finally corrected data, focusing on mature data calibration and corrections -- as well as internal consistency. This Level 3 data product is intended to supersede the various Level 2 versions with calibrated magnetic field readings from the CHAMP mission distributed hitherto and should be fitted for scientific use, assembling time series of scalar magnetic field values (but not directly readings from the scalar Overhauser sensor), vector magnetic field data from the boom-mounted Fluxgate 'FGM' sensors and attitude data from the ('ASC') boom-mounted Star Cameras. The vector data are given both in the satellite-bound sensor ('FGM') system and the Earth Centered Earth Fixed local 'NEC' (North-East-Center) system. The attitude time series, processed and cleaned, are represented by quaternions describing the satellite attitude related to the celestial system. The readings of the scalar OVM (Overhauser) absolute magnetometer at the top of the boom are not supplied directly, but were used during calibration of the vector magnetometer readings. The files with daily time coverage are in the (binary and self-describing) 'CDF' file format and accompanied, beside the generic 'CDF'-format timestamp, by the satellite's geocentric positions and utility information like quality flags. The full product and format descriptions are provided in the associated Scientific Technical Report - Data (GFZ Section 2.3, 2019. http://doi.org/10.2312/GFZ.b103-19104).
CHAMP (CHAllenging Minisatellite Payload) was a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ. With its highly precise, multifunctional and complementary payload elements (Overhauser scalar magnetometer (OVM) and Fluxgate vector magnetometer (FGM), accelerometer, star sensor (ASC), GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP generated highly precise gravity and magnetic field measurements simultaneously for the first time and over a 10 years period. CHAMP launched by a Russian COSMOS launch vehicle on July 15, 2000 and an initial altitude of 454 km. The mission ended on September 19 2010 after ten years, two month and four days, or after 58277 orbits.
# 8
Rother, Martin • Michaelis, Ingo
Abstract: Time series of processed, cleaned attitude readings in quaternion format of the two boom-mounted 'ASC' star sensors of the 'LEO' satellite 'CHAMP', describing the satellite system attitude in respect to the celestial background. The nominal time resolution of the time series in the 'ASCII'-file listing is 1 Hz. The full product and format descriptions are provided in the associated Scientific Technical Report - Data 19/10 (GFZ Section 2.3, 2019. http://doi.org/10.2312/GFZ.b103-19104).
CHAMP (CHAllenging Minisatellite Payload) was a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ . With its highly precise, multifunctional and complementary payload elements (Overhauser scalar magnetometer (OVM) and Fluxgate vector magnetometer (FGM), accelerometer, star sensor (ASC), GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP generated highly precise gravity and magnetic field measurements simultaneously for the first time and over a 10 years period. CHAMP launched by a Russian COSMOS launch vehicle on July 15, 2000 and an initial altitude of 454 km. The mission ended on September 19, 2010, after ten years, two month and four days, or after 58277 orbits.
# 9
Rother, Martin • Michaelis, Ingo
Abstract: Earth's magnetic field vector time series from `LEO' satellite 'CHAMP' for the 'CHAMP' mission period in high, unaveraged 50 Hz time resolution, using measurements from the FGM vector magnetometers and `ASC' Star Sensors on the mid-boom optical bench. The vector data are corrected and calibrated (by using the Overhauser scalar magnetometer as reference). The magnetic field vector data are given both in the satellite-bound sensor (`FGM') system and in the Earth Centered Earth Fixed local `NEC' (North-East-Center) system. For the latter the attitude time series (`ASC'), processed and cleaned, represented by quaternions describing the satellite attitude related to the celestial system, were used for the transformation. The files with daily time coverage are in the (binary and self-describing) `CDF' file format and accompanied, beside the `CDF'-format generic timestamp, by the satellite's geocentric positions and utility information like quality flags. The full product and format descriptions are provided in the associated Scientific Technical Report - Data (GFZ Section 2.3, 2019. http://doi.org/10.2312/GFZ.b103-19104).
CHAMP (CHAllenging Minisatellite Payload) was a German small satellite mission for geoscientific and atmospheric research and applications, managed by GFZ . With its highly precise, multifunctional and complementary payload elements (Overhauser scalar magnetometer (OVM) and Fluxgate vector magnetometer (FGM), accelerometer, star sensor (ASC), GPS receiver, laser retro reflector, ion drift meter) and its orbit characteristics (near polar, low altitude, long duration) CHAMP generated highly precise gravity and magnetic field measurements simultaneously for the first time and over a 10 years period. CHAMP launched by a Russian COSMOS launch vehicle on July 15, 2000 and an initial altitude of 454 km. The mission ended on September 19 2010 after ten years, two month and four days, or after 58277 orbits.
# 10
Ziegler, Moritz O.
Abstract: In geosciences 3D geomechanical-numerical models are used to estimate the in-situ stress state. In such a model each geological unit is populated with the rock properties Young’s module, Poisson ratio, and density. Usually, each unit is assigned a single set of homogeneous properties. However, variable rock properties are observed and expected within the same geological unit. Even in small volumes large variabilities may. The Python script HIPSTER (Homogeneous to Inhomogeneous rock Properties for Stress TEnsor Research) provides an algorithm to include inhomogeneities in geomechanical-numerical models that use the solver Abaqus®. The user specifies the mean values for the rock properties Young's module, Poisson ratio and density, and their variability for each geological unit. The variability of the material properties is individually defined for each of the three rock properties in each geological layer. For each unit HIPSTER generates a normal or uniform distribution for each rock property. From these distri-butions for each single element HIPSTER draws individual rock properties and writes them to a separate material file. This file defines different material properties for each element. The file is included in the geomechanical-numerical analysis solver deck and the numerical model is solved as usual. HIPSTER is fully documented in the associated data report (Ziegler, 2019, http://doi.org/10.2312/WSM.2019.003) and can also be accessed at Github (http://github.com/MorZieg/hipster)
spinning wheel Loading next page