108 documents found in 292ms
# 1
Blanchet, Cécile L.
Abstract: The database presented here contains radiogenic neodymium and strontium isotope ratios measured on both terrestrial and marine sediments. It was compiled to help assessing sediment provenance and transport processes for various time intervals. This can be achieved by either mapping sediment isotopic signature and/or fingerprinting source areas using statistical tools (see supplemental references). The database has been built by incorporating data from the literature and the SedDB database and harmonizing the metadata, especially units and geographical coordinates. The original data were processed in three steps. Firstly, a specific attention has been devoted to provide geographical coordinates to each sample in order to be able to map the data. When available, the original geographical coordinates from the reference (generally DMS coordinates, with different precision standard) were transferred into the decimal degrees system. When coordinates were not provided, an approximate location was derived from available information in the original publication. Secondly, all samples were assigned a set of standardized criteria that help splitting the dataset in specific categories. We defined categories associated with the sample location ("Region", "Sub-region", "Location", which relate to location at continental to city/river scale) or with the sample types (terrestrial samples – “aerosols”, “soil sediments”, “river sediments” - or marine samples –“marine sediment” or “trap sample”). Thirdly, samples were discriminated according to their deposition age, which allowed to compute average values for specific time intervals (see attached table "Age_determination_Sediment_Cores.csv"). The dataset will be updated bi-annually and might be extended to reach a global geographical extent and/or add other type of samples. This dataset contains two csv tables: "Dataset_Nd_Sr_isotopes.csv" and "Age_determination_Sediment_Cores.csv". "Dataset_Nd_Sr_isotopes.csv" contains the assembled dataset of marine and terrestrial Nd and/or Sr concentration and isotopes, together with sorting criteria and geographical locations. "Age_determination_Sediment_Cores.csv" contains all background information concerning the determination of the isotopic signature of specific time intervals (depth interval, number of samples, mean and standard deviation). Column headers are explained in respective metadata comma-separated files. A human readable data description is provided in portable document format, as well. Finally, R code for mapping the data and running statistical analyses is also available for this dataset (see supplemental references).
# 2
Weber, Tobias • Thomas, Maik
Abstract: These data are supplementary material to the manuscript "Influence of ocean tides on the general ocean circulation in the early Eocene" (T. Weber, M. Thomas, Paleoceanography, http://doi.org/10.1002/2016PA002997). It contains atmospheric and oceanic variables as simulated by the coupled atmosphere-ocean model ECHAM5/ MPIOM for the early Eocene (55 million years ago) and a pre-industrial simulation representing climate conditions at 1850 AD. Simulations are performed without and with tidal forcing of the ocean. The files are available in the zip folder in NetCDF and .txt formats (subfolder MHT). An overview on the available files and their content is given in the README.
# 3
Lauterbach, Stefan • Brauer, Achim • Andersen, Nils • Danielopol, Dan • Dulski, Peter • (et. al.)
Abstract: Investigation of the sedimentary record of pre-Alpine Lake Mondsee (Upper Austria) focused on the environmental reaction to rapid Lateglacial climatic changes. Results of this study reveal complex proxy responses that are variable in time and influenced by the long-term evolution of the lake and its catchment. A new field sampling approach facilitated continuous and precisely controlled parallel sampling at decadal to sub-annual resolution for m-XRF element scanning, carbon geochemistry, stable isotope measurements on ostracods, pollen analyses and large-scale thin sections for microfacies analysis. The Holocene chronology is established through microscopic varve counting and supported by accelerator mass spectrometric 14C dating of terrestrial plant macrofossils, whereas the Lateglacial age model is based on d18O wiggle matching with the Greenland NGRIP record, using the GICC05 chronology. Microfacies analysis enables the detection of subtle sedimentological changes, proving that depositional processes even in rather large lake systems are highly sensitive to climate forcing. Comparing periods of major warming at the onset of the Lateglacial and Holocene and of major cooling at the onset of the Younger Dryas reveals differences in proxy responses, reflecting threshold effects and ecosystem inertia. Temperature increase, vegetation recovery, decrease of detrital flux and intensification of biochemical calcite precipitation at the onset of the Holocene took place with only decadal leads and lags over a ca. 100 a period, whereas the spread of woodlands and the reduction of detrital flux lagged the warming at the onset of the Lateglacial Interstadial by ca. 500-750 a. Cooling at the onset of the Younger Dryas is reflected by the simultaneous reaction of d18O and vegetation, but sedimentological changes (reduction of endogenic calcite content, increase in detrital flux) were delayed by about 150-300 a. Three short-term Lateglacial cold intervals, corresponding to Greenland isotope substages GI-1d, GI-1c2 and GI-1b, also show complex proxy responses that vary in time.
# 4
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 5
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 6
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 7
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 8
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 9
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 10
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
spinning wheel Loading next page