No active filters. Use the sidebar to filter search results.
6555 documents found in 374ms
# 1
Broerse, Taco • Norder, Ben • Picken, Stephen • Govers, Rob • Willingshofer, Ernst • (et. al.)
Abstract: This dataset provides strain and strain rate data on mixtures of plasticine, silicone oils and iron powder that has been used in slab break-of analogue experiments in the Tectonic Laboratory (TecLab) at Utrecht University (NL) as an analogue for viscously deforming lithosphere. The materials have been analyzed in a creep and recovery test, applying a parallel plate setup using an AR-G2 rheometer (by TA Instruments). The materials can in general be described as viscoelastic materials with a power-law rheology (see previous work on plasticine-silicone polymer mixtures Weijermars [1986], Sokoutis [1987], Boutelier et al. [2008]). For a couple of the tested materials we find a complementary Newtonian behavior at the low end of the tested stress levels, with a transition to power-law behavior at increasing stress. Furthermore, the materials exhibit elastic and anelastic (recoverable) deformation. The corresponding paper (Broerse et al., 2018) describes the rheology, while this supplement describes the raw data and important details of the measurement setup. The raw data concerns mostly (uncorrected) strain and strain rate data. The rheometry has been performed at the Advanced Soft Matter group at the Department of Chemical Engineering, Delft University of Technology, The Netherlands.
# 2
McBeck, Jessica • Cooke, Michele • Souloumiac, Pauline • Maillot, Bertrand • Mary, Baptiste
Abstract: Tracking the evolution of the deformational energy budget within accretionary systems provides insight into the driving mechanisms that control fault development. To quantify the impact of these mechanisms on overall system efficiency, we estimate energy budget components as the first thrust fault pair develops in dry-sand accretion analogue experiments. This data set includes photos taken and forces measured in four experiments performed at Université de Cergy-Pontoise in October-November 2016. The experiments are described in McBeck et al. (submitted). The data are organized into 5 main folders, with the following contents:1) E373_photos: Contains 3 subfolders: droit_RDY, gauche_RDY, haut_RDY. Each subfolder contains images taken at 1 second intervals throughout experiment. droit_RDY, gauche_RDY, and haut_RDY contain photos of the right, left, and top of the sandpack.2) E374_photos: Same organization and contents of folder E373_photos3) E375_photos: Same organization and contents of folder E373_photos4) E376_photos: Same organization and contents of folder E373_photos5) forces: Contains text files that list the normal force against the backwall (N) and total applied normal displacement to the backwall (mm) in the second and first columns, respectively. The filename indicates which experiment the text file describes.
# 3
Brown, Maxwell • Korte, Monika • Holme, Richard • Wardinski, Ingo • Gunnarson, Sydney
Abstract: Compilation of palaeomagnetic data from sediments and volcanic rocks from 68 sites spanning 30,000 to 50,000 years ago used to create the temporally continuous global spherical harmonic geomagnetic field model LSMOD.1. This is in supplement to the paper "Earth's magnetic field is (probably not reversing" (Brown et al. 2018) A description of how the data were treated is given in SI Appendix of the associated publication. A full list of complementary data sources (references) is given is provided with the data.-----------------For the volcanics there is one filevolc.txt The headers are:Age[ka] - age in thousands of years before present (0 = 1950 AD).Error[ka] - uncertainty on the age.Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.Dec[Deg] - Declination in degrees.Inc[Deg] - Inclination in degrees.Alpha95[Deg] - 95% circular confidence limit on the directional data.F[microT] - intensity in micro Tesla.F_Error[microT] - uncertainy on the intensity in micro Tesla. -9999 - no data-----------------For the sediments there are two types of files, those that end *.txt and those that end *int.txt. *.txt - directional data with the headers: Age[ka] - age in thousands of years before present (0 = 1950 AD).Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.Dec[Deg] - Declination in degrees.Inc[Deg] - Inclination in degrees. -9999 - no data *int.txt - scaled intensity data using PADM2M (as described in Section S1.3 of SI Appendix)Age[ka] - age in thousands of years before present (0 = 1950 AD).Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.F[microT] - Scaled intensity in micro Tesla. 6 of the sediment data sets are individual records (BLS, CHI, MIN, PYR, SIO, S01).6 of the sediment data sets are stacks of records (BBS, NAS, NPS, OBS, SBS, SAS). All details of the records are given in Table S1 and Table S2 of the SI Appendix of the associated publication.
# 4
Dahle, Christoph • Flechtner, Frank • Murböck, Michael • Michalak, Grzegorz • Neumayer, Hans • (et. al.)
Abstract: Spherical harmonic coefficients representing an estimate of Earth's mean gravity field during the specified timespan derived from GRACE mission measurements. These coefficients represent the full magnitude of land hydrology, ice, and solid Earth processes. Further, they represent atmospheric and oceanic processes not captured in the accompanying GAC product.
# 5
Dobslaw, Henryk • Dill, Robert • Dahle, Christoph
Abstract: Spherical harmonic coefficients that represent anomalous contributions of the non-tidal dynamic ocean to ocean bottom pressure during the specified timespan. The anomalous signals are relative to the mean field from 2003-2014.
# 6
Dobslaw, Henryk • Dill, Robert • Dahle, Christoph
Abstract: Spherical harmonic coefficients that represent the sum of the ATM (or GAA) and OCN (or GAB) coefficients during the specified timespan. These coefficients represent anomalous contributions of the non-tidal dynamic ocean to ocean bottom pressure, the non-tidal atmospheric surface pressure over the continents, the static contribution of atmospheric pressure to ocean bottom pressure, and the upper-air density anomalies above both the continents and the oceans. The anomalous signals are relative to the mean field from 2003-2014.
# 7
Dobslaw, Henryk • Dill, Robert • Dahle, Christoph
Abstract: Spherical harmonic coefficients that represent anomalous contributions of the non-tidal atmosphere to the Earth's mean gravity field during the specified timespan. This includes the contribution of atmospheric surface pressure over the continents, the static contribution of atmospheric pressure to ocean bottom pressure elsewhere, and the contribution of upper-air density anomalies above both the continents and the oceans. The anomalous signals are relative to the mean field from 2003-2014.
# 8
Dobslaw, Henryk • Dill, Robert • Dahle, Christoph
Abstract: Spherical harmonic coefficients that are zero over the continents, and provide the anomalous simulated ocean bottom pressure that includes non-tidal air and water contributions elsewhere during the specified timespan. These coefficients differ from GLO (or GAC) coefficients over the ocean domain by disregarding upper air density anomalies. The anomalous signals are relative to the mean field from 2003-2014.
# 9
Mikolaj, Michal
Abstract: This software publication describes the data acquisition, processing and modelling of hydrological, meteorological and gravity time series prepared for the Argentine-German Geodetic Observatory (AGGO) in La Plata, Argentina. The corresponding output data set is available at http://doi.org/10.5880/GFZ.5.4.2018.001 (Mikolaj et al., 2018). Processed hydrological series include soil moisture, temperature, electric conductivity, and groundwater variation. The processed meteorological time series comprise air temperature, humidity, pressure, wind speed, solar short- and long-waver radiation, and precipitation. Modelling scripts include evapotranspiration, combined precipitation, and water content variation in the zone between deepest soil moisture sensor and groundwater. In addition, large-scale hydrological, oceanic as well as atmospheric effect are modelled along with the local hydrological effects. To allow for a comparison of the model outputs to observations, processing script of gravity residuals is provided as well.
# 10
Mikolaj, Michal • Güntner, Andreas • Brunini, Claudio • Wziontek, Hartmut • Gende, Mauricio • (et. al.)
Abstract: The data set contains hydrological, meteorological and gravity time series collected at Argentine-German Geodetic Observatory (AGGO) in La Plata, Argentina. The hydrological series include soil moisture, temperature, electric conductivity, soil parameters, and groundwater variation. The meteorological time series comprise air temperature, humidity, pressure, wind speed, solar short- and long-waver radiation, and precipitation. The observed hydrometeorological parameters are extended by modelled value of evapotranspiration and water content variation in the zone between deepest soil moisture sensor and the groundwater level. Gravity products include large-scale hydrological, oceanic as well as atmospheric effects. These gravity effects are furthermore extended by local hydrological effects and gravity residuals suitable for comparison and evaluation of the model performance. Provided are directly observed values denoted as Level 1 product along with pre-processed series corrected for known issues (Level 2). Level 3 products are model outputs acquired using Level 2 data. The maximal temporal coverage of the data set ranges from May 2016 up to November 2018 with some exceptions for sensors and models set up in May 2017. The data set is organized in a database structure suitable for implementation in a relational database management system. All definitions and data tables are provided in separate text files allowing for traditional use without database installation. Software related to the data acquisition, processing, and modelling can be found in a separate publication describing scripts applied to the data set presented here. The software publication is available at https://doi.org/10.5880/GFZ.5.4.2018.002 (Mikolaj, 2018)
spinning wheel Loading next page