No active filters. Use the sidebar to filter search results.
6580 documents found in 288ms
# 1
Lühr, Birger • Ibanez, Jesus M. • Dahm, Torsten
Abstract: The TOMO-ETNA experiment was focused on the base of generation and acquisition of seismic signal (active and passive) at Mt. Etna volcano and surrounding area. The terrestrial campaign consists in the deployment of 80 short-period three-component seismic stations (June 15 to July24), 17 Broadband seismometers (June 15 to October 30) provided by Helmholtz Centre Potsdam (GFZ) German Research Centre for Geosciences using the German Geophysical Instrument Pool Potsdam (GIPP Gerätepool Geophysik), and the coordination with 133 permanent seismic station belonging to the “Istituto Nazionale di Geofisica e Vulcanologia” (INGV) of Italy. This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish Oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5.200 cubic inches. In total more than 26.000 shots were fired and more than 450 local and regional earthquakes were recorded. Until July the Oceanographic Vessel “Sarmiento de Gamboa” and the hydrographic vessel “Galatea” were responsible for the offshore activities, that included deployment of OBSs, and several marine activities. The vessel “Aegaeo” performed additional seismic, magnetic and gravimetric experiments until the end of November 2014. This experiment was part of the “Task 5.3 - Mt. Etna structure” of the “EU MED-SUV Project” concerned with the investigation of Mt. Etna volcano (seismic tomography experiment - TOMO-ETNA) by means of passive and active refraction/reflection seismic methods. It focused on the investigation of Etna’s roots and surrounding areas by means of passive and active seismic methods. Therefore, this experiment included activities both on-land and offshore with the main objective to obtain a new high-resolution tomography in order to improve the 3D image of the crustal structures existing beneath the Etna volcano and the northeast Sicily (Peloritani - Nebrodi chain) up to the Aeolian Islands. Waveform data are open and available from the GEOFON data centre, under network code 1T.
# 2
Lu, Biao • Förste, Christoph • Barthelmes, Franz • Petrovic, Svetozar • Flechtner, Frank • (et. al.)
Abstract: With the successful completion of ESA's PolarGAP campaign, terrestrial gravimetry data (gravity anomalies) are now available for both polar regions. Therefore, it is now possible to overcome the GOCE polar gap by using real gravimetry data instead of some regularization methods. But terrestrial gravimetry data needs to become filtered to remove the high-frequency gravity information beyond spher. harm. degree e.g. 240 to avoid disturbing spectral leakage in the satellite-only gravity field models. For the gravity anomalies from the Arctic, we use existing global gravity field models (e.g., EGM2008) for this filtering. But for the gravity anomalies from Antarctica, we use local gravity field models based on a point mass modeling method to remove the high-frequency gravity information. After that, the boundary-value condition from Molodensky's theory is used to build the observation equations for the gravity anomalies. Finally, variance component estimation is applied to combine the normal equations from the gravity anomalies, from the GOCE GGs (e.g., IGGT_R1), from GRACE (e.g., ITSG-Grace2014s) and for Kaula's rule of thumb (higher degree/order parts) to build a global gravity field model IGGT_R1C without disturbing impact of the GOCE polar gap. This new model has been developed by German Research Centre for Geosciences (GFZ), Technical University of Berlin (TUB), Wuhan University (WHU) and Huazhong University of Science and Technology (HUST). Parametersstatic model modelname IGGT_R1Cproduct_type gravity_fieldearth_gravity_constant 0.3986004415E+15radius 0.6378136460E+07max_degree 240norm fully_normalizedtide_system tide_freeerrors formal
# 3
Lange, Stefan
Abstract: VERSION HISTORY:- On June 26, 2018 all files were republished due to the incorporation of additional observational data covering years 2014 to 2016. Prior to that date, the dataset only covered years 1979 to 2013. Data for all years prior to 2014 are identical in this and the original version of the dataset. DATA DESCRIPTION:The EWEMBI dataset was compiled to support the bias correction of climate input data for the impact assessments carried out in phase 2b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b; Frieler et al., 2017), which will contribute to the 2018 IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. The EWEMBI data cover the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2013. Data sources of EWEMBI are ERA-Interim reanalysis data (ERAI; Dee et al., 2011), WATCH forcing data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014), eartH2Observe forcing data (E2OBS; Calton et al., 2016) and NASA/GEWEX Surface Radiation Budget data (SRB; Stackhouse Jr. et al., 2011). The SRB data were used to bias-correct E2OBS shortwave and longwave radiation (Lange, 2018). Variables included in the EWEMBI dataset are Near Surface Relative Humidity, Near Surface Specific Humidity, Precipitation, Snowfall Flux, Surface Air Pressure, Surface Downwelling Longwave Radiation, Surface Downwelling Shortwave Radiation, Near Surface Wind Speed, Near-Surface Air Temperature, Daily Maximum Near Surface Air Temperature, Daily Minimum Near Surface Air Temperature, Eastward Near-Surface Wind and Northward Near-Surface Wind. For data sources, units and short names of all variables see Frieler et al. (2017, Table 1).
# 4
Lange, Stefan
Abstract: The EWEMBI dataset was compiled to support the bias correction of climate input data for the impact assessments carried out in phase 2b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b; Frieler et al., 2017), which will contribute to the 2018 IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. The EWEMBI data cover the entire globe at 0.5° horizontal and daily temporal resolution from 1979 to 2013. Data sources of EWEMBI are ERA-Interim reanalysis data (ERAI; Dee et al., 2011), WATCH forcing data methodology applied to ERA-Interim reanalysis data (WFDEI; Weedon et al., 2014), eartH2Observe forcing data (E2OBS; Calton et al., 2016) and NASA/GEWEX Surface Radiation Budget data (SRB; Stackhouse Jr. et al., 2011). The SRB data were used to bias-correct E2OBS shortwave and longwave radiation (Lange, 2018). Variables included in the EWEMBI dataset are Near Surface Relative Humidity, Near Surface Specific Humidity, Precipitation, Snowfall Flux, Surface Air Pressure, Surface Downwelling Longwave Radiation, Surface Downwelling Shortwave Radiation, Near Surface Wind Speed, Near-Surface Air Temperature, Daily Maximum Near Surface Air Temperature, Daily Minimum Near Surface Air Temperature, Eastward Near-Surface Wind and Northward Near-Surface Wind. For data sources, units and short names of all variables see Frieler et al. (2017, Table 1).
# 5
Kwiatek, Grzegorz • Saarno, Tero • Ader, Thomas • Bluemle, Felix • Bohnhoff, Marco • (et. al.)
Abstract: The dataset is supplementary material to Kwiatek et al. (2019, Science Advances). The dataset is a refined seismic catalog acquired during the hydraulic stimulation of the future geothermal sites located in Espoo, Finland. There, the injection well, OTN-3, was drilled down to 6.1 km-depth into Precambrian crystalline rocks. Well OTN-3 was deviated 45° from vertical and an open hole section at the bottom was divided into several injection intervals. A total of 18,159 m3 of fresh water was pumped into crystal-line rocks during 49 days in June- and July, 2018. The stimulation was monitored in near-real time using (1) a 12-level seismometer array at 2.20-2.65 km depth in an observation well located ~10 m from OTN3 and (2) a 12-station network installed in 0.3-1.15 km deep bore-holes surrounding the project site. On completion of stimulation it the catalog contained 8452 event detections overall, and 6152 confirmed earthquakes located in the vicinity of the project site (epicentral distance from the well head of OTN-3 <5 km). These were recorded in a time period lasting 59 days: 49 days of active stimulation campaign and the 10 days following completion. The initial industrial seismic catalog of 6150 earthquakes was manually reprocessed. The P- and S-wave arrivals of larger seismic events with M>0.5 were all manually verified, and, if necessary, refined. Earthquakes with sufficient number of phases and seemingly anomalous hypocenter depths (e.g. very shallow or very deep) were manually revised as well. The hypocenter locations were calculated using the Equivalent differential time method and optimized with an Adaptive Simulated Annealing algorithm. The updated catalog contained 4,580 earthquakes that occurred at hypocenter depths 4.5-7.0 km, in the vicinity of the stimulation section of OTN-3. To increase the precision of their locations, the selected 2155 earthquakes with at least 10 P-wave and 4 S-wave picks were relocated using the double-difference relocation technique. The relocation uncertainties were estimated using bootstrap resampling technique. The relocation reduced the relative precision of hypocenter determination to approx. 66 m and 27 m for 95% and 68% of relocated earthquakes. The final relocated catalog that constitutes the here published contained 1,977 earthquakes (91% of the originally selected events).
# 6
Balling, Niels • Tilmann, Frederik • Kind, Rainer
Abstract: This project investigates the crust and upper mantle along a north-south oriented, about 350 km long profile from around the town of Ringkøbing in western Jutland to south of Hamburg in northwestern Germany, with a focus on teleseismic receiver functions and seismic tomography. A number of tectonic processes have affected the crust and uppermost mantle beneath southern Scandinavia and northern Germany: Precambrian crustal accretion in southern Baltica, Caledonian collision between Baltica and Avalonia along the Tornquist Suture Zone (TSZ), followed by Variscan collision and formation of the North German and the Norwegian-Danish basins, and more recent magmatic activity to the south. This study is particularly focused on the closure of the Tornquist Sea and the Caledonian collision between Baltica and Avalonia. A total of 29 stations, provided by GFZ and the University of Aarhus, were deployed between autumn 2010 and summer 2012, of which 25 form the main profile, and 4 are positioned in an off-line location. Waveform data are available from the GEOFON data centre, under network code ZW, and are available under CC-BY 4.0 license according to GIPP-rules.
# 7
Hannah Parow-Souchon
Abstract: This Appendix contains further information on different topics of Hannah Parow – Souchon's PhD thesis (2019) The Wadi Sabra - A contextual approach to the Palaeolithic Landscape, listed as follows: 1) Methodology 2) Further material on the Wadi Sabra sites 3) Spearmans rs correlations for the diversity index and tool inventory size 4) Type list transformation reference 5) Faunal species used/not used in the calculations 6) Sites represented in the different chapters 7) Typological designation of the sites used in the thesis 8) R-Code for CCA and Postfit (with pers. comm. Georg Roth) 9)- 11) Further material on the CCA 1 -12 calculations 12) Blank counts dataset Plate I – Plate CXXXII
# 8
Mikolaj, Michal • Reich, Marvin • Andreas, Güntner
Abstract: This publication contains the supplementary data set to Mikolaj et al. "Resolving geophysical signals by terrestrial gravimetry: a time domain assessment of the correction-induced uncertainty" (2019, JGR-Solid Earth). The aim of the article is to estimate the uncertainty of terrestrial gravity corrections applied to resolve small-scale gravity effects. The uncertainty of the gravity corrections is assessed using various models of the tidal effect, large-scale hydrology, non-tidal ocean loading, and atmosphere. Taken into account are widely recognized models with global spatial coverage, sufficient temporal resolution and coverage, and available to the public for research purposes. The uncertainty is expressed in terms of a root-mean-square and mean-absolute error of the deviations between all available models. The data set comprises models for 11 sites worldwide. The processing scripts are provided along with an explanatory file with all instructions for results reproduction and application of the uncertainty analysis for an arbitrary location. Please consult the readme file for further details on the data.
# 9
Rudolf, Michael • Rosenau, Matthias • Ziegenhagen, Thomas • Ludwikowski, Volker • Schucht, Torsten • (et. al.)
Abstract: The presented datasets and scripts have been obtained for testing the performance of a trigger algorithm for use in combination with a ringshear tester ‘RST-01.pc’. Glass beads (fused quartz microbeads, 300-400 µm diameter) and thai rice are sheared at varying velocity, stiffness and normal load. The data is provided as preprocessed mat-files ('*.mat') to be opened with Matlab R2015a and later. Several scripts are provided to reproduce the figures found in (Rudolf et al., submitted). A detailed list of files together with the respective software needed to view and execute them is available in 'List_of_Files_Rudolf-et-al-2018.pdf' (also available in MS Excel Format). More information on the datasets and a small documentation of the scripts is given in 'Explanations_Rudolf-et-al-2018.pdf'. The complete data publication, including all descriptions, datasets, and evaluation scripts is available as 'Dataset_Rudolf-et-al-2018.zip'.
# 10
Pick, Leonie • Korte, Monika
Abstract: The HMC (Hourly Magnetospheric Currents) index measures the activity of large-scale magnetospheric currents on Earth's surface from 1900 to 2015. It resolves the absolute intensity of low-frequency variations, especially at periods relevant to the solar cycle, more robustly than existing geomagnetic indices. HMC is based on hourly means of vector magnetic field measurements from 34 mid latitude geomagnetic observatories obtained from WDC Edinburgh (http://www.wdc.bgs.ac.uk/catalog/master.html). This data has been manually revised to correct for spikes, jumps and drifts. A detailed description of the derivation method is given in Pick et al., 2018 to which these data are supplementary material. This directory contains the HMC index (hmc1900phor.hor) and the modified observatory data that it is based on (data.zip). The index and the observatory data files are formatted in compliance with the IAGA-2002 ASCII exchange format (https://www.ngdc.noaa.gov/IAGA/vdat/IAGA2002/iaga2002format.html). Individual file names are composed of:[IAGA code of observatory] + [first active year during 1900-2015] + [p(provisional)] + [hor(hourly)] + [_mod(modified)].hor Also included is information on how the data modifications (list in modifications.pdf) were applied (readme.txt).
spinning wheel Loading next page