203 documents found in 173ms
# 1
Waldhoff, Guido
Abstract: This data set contains the land use classification of 2009 for the study area of the CRC/Transregio 32: "Patterns in Soil-Vegetation-Atmosphere Systems: monitoring, modelling and data assimilation", which is the catchment of the river Rur. The study area is mainly situated in the western part of North Rhine-Westphalia (Germany) and parts of the Netherlands and Belgium, covering an area of approximately 2365 square kilometres. The land use classification is derived from a supervised, multi temporal remote sensing data analysis using "Advanced Spaceborne Thermal Emission and Reflection Radiometer" (ASTER) and RapidEye data. ASTER is a multispectral satellite sensor, which has three bands in the visible and near infrared (VNIR) with 15 m spatial resolution, six bands in the shortwave infrared (SWIR) with 30 m, and five bands in the thermal infrared (TIR) with 90 m. For the land use classification the VNIR data acquired on July 27, 2009 were used. Each sensor of the RapidEye earth observation satellite system has five multispectral bands in the visible to near infrared wavelength region with a spatial resolution of 6.5 m. The incorporated data set was acquired on May 24, 2009. To enhance the information content of the land use data the Multi-Data Approach was used to combine the remote sensing data with additional data sets like the "Authorative Topographic-Cartographic Information System" (ATKIS Basic-DLM). The classification is provided in GeoTIFF and in ASCII format. Spatial resolution: 15 m; projection: WGS84, UTM Zone 32N.
# 2
KTB, WG Geochemistry
Abstract: Infrared-Spectrometry on Cutting Samples of the KTB Main Hole (Drill Section HB1i), 8732-9101 m.
# 3
KTB, WG Geochemistry
Abstract: Infrared-Spectrometry on Cutting Samples of the KTB Main Hole (Drill Section HB1h), 7392-8728 m.
# 4
KTB, WG Geochemistry
Abstract: Infrared-Spectrometry on Cutting Samples of the KTB Main Hole (Drill Section HB1g), 7220-8322 m.
# 5
KTB, WG Geochemistry
Abstract: Infrared-Spectrometry on Cutting Samples of the KTB Main Hole (Drill Section HB1d), 6770-7218 m.
# 6
KTB, WG Geochemistry
Abstract: Infrared-Spectrometry on Cutting Samples of the KTB Main Hole (Drill Section HB1a), 5596-6760 m.
# 7
KTB, WG Geochemistry
Abstract: Infrared-Spectrometry on Cutting Samples of the KTB Main Hole (Drill Section HB1), 7-5590 m.
# 8
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 9
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 10
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
spinning wheel Loading next page