228 documents found in 264ms
# 11
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 12
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 13
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 14
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 15
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 16
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 17
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 18
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 19
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 20
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
spinning wheel Loading next page