200 documents found in 328ms
# 191
KTB, WG Geochemistry
Abstract: Cuttings were crushed in a tungsten carbide ball mill for 25 min; while core samples were crushed in a tungsten carbide jaw breaker and then processed in the same way as the chip material. The resulting powder samples (max 0.06 mm size) were dried at 105°C, 3 gr selected and mixed with 2.5% Moviol solution and finally pressed under 40 kN into alumina rings. These standardized pellets were used for both, XRD and XRF measurements.For the determination of major and trace elements a fully automated wavelenght-dispersive XRF device (SIEMENS SRS 303 AS) was used in the field laboratory. The standard measuring operation comprised 11 major elements (SiO2, TiO2, Al2O3, Fe2O3 total, MnO, MgO, CaO, Na2O, K2O, P2O5, S) and 12 traces (Rb, Sr, Y, Zr, Nb, Cr, Ni, Zn, V, Cu, Th, U). Element concentrations were calculated by setting up calibration curves computed with more than 40 international natural rock standards.
# 192
KTB, WG Geochemistry
Abstract: Cuttings were crushed in a tungsten carbide ball mill for 25 min; while core samples were crushed in a tungsten carbide jaw breaker and then processed in the same way as the chip material. The resulting powder samples (max 0.06 mm size) were dried at 105°C, 3 gr selected and mixed with 2.5% Moviol solution and finally pressed under 40 kN into alumina rings. These standardized pellets were used for both, XRD and XRF measurements.For the determination of major and trace elements a fully automated wavelenght-dispersive XRF device (SIEMENS SRS 303 AS) was used in the field laboratory. The standard measuring operation comprised 11 major elements (SiO2, TiO2, Al2O3, Fe2O3 total, MnO, MgO, CaO, Na2O, K2O, P2O5, S) and 12 traces (Rb, Sr, Y, Zr, Nb, Cr, Ni, Zn, V, Cu, Th, U). Element concentrations were calculated by setting up calibration curves computed with more than 40 international natural rock standards.
# 193
KTB, WG Geochemistry
Abstract: Cuttings were crushed in a tungsten carbide ball mill for 25 min; while core samples were crushed in a tungsten carbide jaw breaker and then processed in the same way as the chip material. The resulting powder samples (max 0.06 mm size) were dried at 105°C, 3 gr selected and mixed with 2.5% Moviol solution and finally pressed under 40 kN into alumina rings. These standardized pellets were used for both, XRD and XRF measurements.For the determination of major and trace elements a fully automated wavelenght-dispersive XRF device (SIEMENS SRS 303 AS) was used in the field laboratory. The standard measuring operation comprised 11 major elements (SiO2, TiO2, Al2O3, Fe2O3 total, MnO, MgO, CaO, Na2O, K2O, P2O5, S) and 12 traces (Rb, Sr, Y, Zr, Nb, Cr, Ni, Zn, V, Cu, Th, U).Element concentrations were calculated by setting up calibration curves computed with more than 40 international natural rock standards.
# 194
KTB, WG Geochemistry
Abstract: Cuttings were crushed in a tungsten carbide ball mill for 25 min; while core samples were crushed in a tungsten carbide jaw breaker and then processed in the same way as the chip material. The resulting powder samples (max 0.06 mm size) were dried at 105°C, 3 gr selected and mixed with 2.5% Moviol solution and finally pressed under 40 kN into alumina rings. These standardized pellets were used for both, XRD and XRF measurements.For the determination of major and trace elements a fully automated wavelenght-dispersive XRF device (SIEMENS SRS 303 AS) was used in the field laboratory. The standard measuring operation comprised 11 major elements (SiO2, TiO2, Al2O3, Fe2O3 total, MnO, MgO, CaO, Na2O, K2O, P2O5, S) and 12 traces (Rb, Sr, Y, Zr, Nb, Cr, Ni, Zn, V, Cu, Th, U). Element concentrations were calculated by setting up calibration curves computed with more than 40 international natural rock standards.
# 195
KTB, WG Geochemistry
Abstract: Cuttings were crushed in a tungsten carbide ball mill for 25 min; while core samples were crushed in a tungsten carbide jaw breaker and then processed in the same way as the chip material. The resulting powder samples (max 0.06 mm size) were dried at 105°C, 3 gr selected and mixed with 2.5% Moviol solution and finally pressed under 40 kN into alumina rings. These standardized pellets were used for both, XRD and XRF measurements.For the determination of major and trace elements a fully automated wavelenght-dispersive XRF device (SIEMENS SRS 303 AS) was used in the field laboratory.The standard measuring operation comprised 11 major elements (SiO2, TiO2, Al2O3, Fe2O3 total, MnO, MgO, CaO, Na2O, K2O, P2O5, S) and 12 traces (Rb, Sr, Y, Zr, Nb, Cr, Ni, Zn, V, Cu, Th, U). Element concentrations were calculated by setting up calibration curves computed with more than 40 international natural rock standards.
# 196
KTB, WG Geochemistry
Abstract: Cuttings were crushed in a tungsten carbide ball mill for 25 min; while core samples were crushed in a tungsten carbide jaw breaker and then processed in the same way as the chip material. The resulting powder samples (max 0.06 mm size) were dried at 105°C, 3 gr selected and mixed with 2.5% Moviol solution and finally pressed under 40 kN into alumina rings. These standardized pellets were used for both, XRD and XRF measurements.For the determination of major and trace elements a fully automated wavelenght-dispersive XRF device (SIEMENS SRS 303 AS) was used in the field laboratory. The standard measuring operation comprised 11 major elements (SiO2, TiO2, Al2O3, Fe2O3 total, MnO, MgO, CaO, Na2O, K2O, P2O5, S) and 12 traces (Rb, Sr, Y, Zr, Nb, Cr, Ni, Zn, V, Cu, Th, U).Element concentrations were calculated by setting up calibration curves computed with more than 40 international natural rock standards.
# 197
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 198
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 199
Kamm, H • Machon, L • Donner, S
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methods (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992). In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line.
# 200
Kamm, H • Machon, L • Donner, S
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methods (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992). In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line.
spinning wheel Loading next page