42 documents found in 268ms
# 1
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 2
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 3
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 4
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 5
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 6
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 7
KTB, WG Geophysics
Abstract: The magnetic susceptibility is measured by an inductive AC device (BARTINGTON). The sample is placed inside a coil which generates an alternating magnetic field. The applied frequency is 460 Hz (cuttings, 25.4 mm mini cores), 565 Hz (cores) or 1470 Hz (15 mm mini cores) respectively. A shift in the oscillator frequency is a measure for the magnetic susceptibility of the sample. The applied magnetic field strength is 80 A/m (RMS) and appr. 2 times the total earth magnetic field strength in the KTB area (=38 A/m). The measurement field is lower than the field which is necessary for magnetic saturation and allows therefore to measure the initial susceptibility. The used sensors are insensitive to the electrical conductivity of the samples. Except the determination of the temperature dependent susceptibility, all measurements are done under surface conditions (room temperature and atmospheric pressure).
# 8
KTB, WG Geophysics
Abstract: In the laboratory, the gamma radiation is measured by a sodium iodtite (NaI) scintillation detector (cores and cuttings) and by a germanium (Ge) semiconductor detector (cuttings).The cuttings are measured in air tight Marinelli-beakers with a volume of 250 cm3. For the core measurements a special, automatically operating equipment with three NaI detectors is used. A description of this apparatus is given in Wienand et al. (1989). The principle of measurements with the Ge-detector is described by Bücker et al. (1991). The measured spectra are calibrated by a standard of Luvarovite (NIM-L, South African Bureau of Standards). The influence of the local terrestrial radiation on the measurements has been corrected. Especially for the core measurements a calibration procedure has been performed for geometric corrections (core diameter and length). In general, a measuring time of 12 h for the NaI-detector and 2 h for the Ge-detector was chosen.
# 9
KTB, WG Geophysics
Abstract: In the laboratory, the gamma radiation is measured by a sodium iodtite (NaI) scintillation detector (cores and cuttings) and by a germanium (Ge) semiconductor detector (cuttings).The cuttings are measured in air tight Marinelli-beakers with a volume of 250 cm3. For the core measurements a special, automatically operating equipment with three NaI detectors is used. A description of this apparatus is given in Wienand et al. (1989). The principle of measurements with the Ge-detector is described by Bücker et al. (1991). The measured spectra are calibrated by a standard of Luvarovite (NIM-L, South African Bureau of Standards). The influence of the local terrestrial radiation on the measurements has been corrected. Especially for the core measurements a calibration procedure has been performed for geometric corrections (core diameter and length). In general, a measuring time of 12 h for the NaI-detector and 2 h for the Ge-detector was chosen.
# 10
KTB, WG Geophysics
Abstract: In the laboratory, the gamma radiation is measured by a sodium iodtite (NaI) scintillation detector (cores and cuttings) and by a germanium (Ge) semiconductor detector (cuttings).The cuttings are measured in air tight Marinelli-beakers with a volume of 250 cm3. For the core measurements a special, automatically operating equipment with three NaI detectors is used. A description of this apparatus is given in Wienand et al. (1989). The principle of measurements with the Ge-detector is described by Bücker et al. (1991). The measured spectra are calibrated by a standard of Luvarovite (NIM-L, South African Bureau of Standards). The influence of the local terrestrial radiation on the measurements has been corrected. Especially for the core measurements a calibration procedure has been performed for geometric corrections (core diameter and length). In general, a measuring time of 12 h for the NaI-detector and 2 h for the Ge-detector was chosen.
spinning wheel Loading next page