92 documents found in 264ms
# 1
Haberland, Christian • Seneviratne, Mahinda • Dreiling, Jennifer
Abstract: A temporary seismic network was installed in Sri Lanka for a time period of 13 months. The stations were equipped with Earth Data EDR-210 digital recorders and Trillium 120 PA, Güralp C3E and Güralp CMG-3ESP broadband sensors. Main aim of the network is to shed light on the crustal and upper mantle structure beneath the island. Also local seismic activity is studied.
# 2
Rudenko, Sergei • Schöne, Tilo • Neumayer, Karl-Hans • Esselborn, Saskia • Raimondo, Jean-Claude • (et. al.)
Abstract: The data set provides GFZ VER11 orbits of altimetry satellites ERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005), derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below. The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2017)
# 3
Cesca, Simone • López Comino, José Ángel • Kühn, Daniela • Dahm, Torsten
Abstract: A temporary installation has been realized in the Netherlands, in the region of the Groningen gas field. The objective of this installation is to test the usage of a conventional array layout for detection of microseismicity. The region of the Groningen gas field is an excellent test ground, since the operating company NAM (Nederlandse Aardolie Maatschappij) installed a multitude of shallow borehole stations from 2014 to 2017, of which 65 – in addition to the already existing shallow borehole stations installed by KNMI (Koninklijk Nederlands Meteorologisch Instituut) – were already online during the time of measurement, thus ensuring an earthquake catalogue that is complete down to low magnitudes during the time of array installation. The site for the installation was decided together with local parties involved in the seismicity monitoring, i.e. KNMI and NAM, and was located close to the village of Wittewierum. Stations were installed from the 12th of July 2016 to the 29th of August 2016 (49 days). The array was composed of 9 stations. The array was constructed in three concentric rings of 75 m, 150 m and 225 m diameter including a central station, but the geometry had to be adapted to the local conditions. Each station consisted of a broadband sensor (Trillium 120 s), an acquisition system (CUBE datalogger), a battery, and a GPS antenna. The entire system was installed at ~1 m depth (apart from GPS and transmission antennas), requiring only the digging of shallow holes, one for the installation of a thin concrete plate and the sensor, another one for a box containing the remaining instrumentation. The array stations recorded continuously with little outages; only station WAR1 stopped recording on the 22nd of August and station WAR7 stopped recording from 20th to 22nd of August. Waveform data is available from the GEOFON data centre, under network code 1C, and is fully open.
# 4
Vey, Sibylle • Güntner, Andreas • Wickert, Jens • Blume, Theresa • Thoss, Heiko • (et. al.)
Abstract: We provide data of a case study from the GNSS station Wettzell, Germany (WTZR). This data set contains snow depth derived from GNSS data using reflectometry. It covers a time period from July 1, 2012 to July 1, 2015 and gives the integral snow depth over an area of about 150 by 30 m. The data are daily averages based on daily measurements from 4 different satellites. The GNSS derived snow depth was validated by observations from ultrasonic sensors (US). The detailed description of the processing, the evaluation with US and the discussion of the results is described in Vey et al. (2016). The data are provided in ASCII format with four colums: GNSS data (file Vey-et-al-2016-GNSS_2012_15.txt): (1) year (YEAR) (2) day of the year (DOY) (3) snow depth (SD cm) from GNSS (4) accuracy, root mean square error (RMSE cm) Ultrasonic Sensor data (file Vey-et-al-2016-US_2012_15..txt): (1) year (YEAR) (2) day of the year (DOY) (3) SD_US_pillow (cm) snow depth from the US sensor located above snow pillow (4) SD_US_SPA(cm) snow depth from the US sensor located at the snow pack analyzer
# 5
Lott, Friederike • Al-Qaryouti, Mahmoud • Corsmeier, Ulrich • Ritter, Joachim
Abstract: A temporary seismic array was installed in combination with a meteorological station in the Dead Sea valley, Jordan. Within the scope of the HGF virtual institute DESERVE we operated 15 temporary seismic stations between February 2014 and February 2015 together with a nearby meteorological station close to the east coast of the Dead Sea. The main aim was to acquire data to study the influence of wind on seismic records and retrieve related meteorological parameters. The study area is scarcely populated and has ideal meteorological conditions to study periodically occurring winds.
# 6
Ries, J. • Bettadpur, S. • Eanes, R. • Kang, Z. • Ko, U. • (et. al.)
Abstract: GGM05C is an unconstrained global gravity model complete to degree and order 360 determined from 1) GRACE K-band intersatellite range-rate data, GPS tracking and GRACE accelerometer data, 2) GOCE gradiometer data (ZZ+YY+XX+XZ) spanning the entire mission using a band pass filter of 10-50 mHz and polar gap filled with synthetic gradients from GGM05S to degree/order 150 evaluated at 200-km altitude, and 3) terrestrial gravity anomalies from DTU13 (Andersen et al., 2014). The value for C20 has been replaced with a value derived from satellite laser ranging. No rate terms were modeled. For additional details on the background modeling, see the CSR RL05 processing standards document available at ftp://podaac.jpl.nasa.gov/allData/grace/docs/L2-CSR0005_ProcStd_v4.0.pdf (Bettadpur 2012). Detailed information about GGM05C is available at ftp://ftp.csr.utexas.edu/pub/grace/GGM05/README_GGM05C.pdf (Ries et al., 2016).
# 7
Christian Zeeden • Lydia Krauß • Frank Lehmkuhl • Holger Kels
Abstract: Supplementary R script for a manuscript. The script facilitates automatic drawing of a representative outcrop from colour data (L*, a*, b*).
# 8
Rudolf, Michael • Boutelier, David • Rosenau, Matthias • Schreurs, Guido • Oncken, Onno
Abstract: The datasets that are presented here have been obtained to provide a rheological benchmark of silicones used in various analog modeling laboratories. The data contains rheological measurements of several polydimethylsiloxanes (PDMS) and filled silicone oils. The samples of eight different silicone oils originate from seven laboratories. Each sample was analyzed using rotational controlled shear rate tests (CSR), temperature sweep test, and dynamical oscillation tests (amplitude and frequency sweeps). Detailed information on the analysis and interpretation of the data is found in Rudolf, et al. (2016).The data is provided as comma-separated files in *.csv format. Each file contains multiple measurements, each starting with own data series information that is followed by the actual measurement in the form of a table including the individual units of measure. Furthermore the results from ReSpect (Takeh & Shanbhag, 2013) for the discrete Maxwell relaxation spectra are provided. All files can be opened using a text-editor, MS Excel, or equivalent software.More information about the datasets is available in the file Explanations_Rudolf-et-al-2016.pdf, an overview on the available files in the List_of_Files_Rudolf-et-al-2016 (in .pdf and .xlsx format). All information and overview files are also included in Rudolf-et-al-2016_datasets.zip.
# 9
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides compaction data from axial testing on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by uniaxial, confined compression testing using the Axial Tester at GFZ Potsdam’s analogue laboratory for tectonic modelling . Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the container (jar). Up to 2000 kPa of uniaxial compression has been applied in 50 cycles. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting stress curve data are presented at 20 Hz frequency and the Unit of N. From the stress curves the compaction data have been derived. These correspond to the normalized sample height (normalized to the initial height) of the sample at the beginning of each cycle and are characterized by an exponential decrease over the 50 cycles. From that the following compaction parameters are derived: total compaction (shortening after 50 cycles Ct=eps50), the compaction during the first cycle (eps1) as well as the compaction index (Ci = eps1/eps50). Compaction data are finally visualized in the compactionDataPlot file.Each material sample has a relation to three files: stress curve data (txt format, 50 files per sample), compaction data (in xls and txt format), compaction plot (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table CompactionDataOverview.xls.
# 10
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides friction data from ring shear test (RST) on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994) at GFZ Potsdam’s analogue laboratory for tectonic modelling. Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the shear cell. Measurements have been done at normal loads (normal stress) of 430, 860, 1290, 1720, and 2150 Pa and shear velocity of 3 mm/min typical of experimental conditions. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%). The measurements presented here correspond to internal friction, shearing inside the material. Data for so-called basal or wall friction, i.e. shearing against a fixed plate, are available on request.The resulting shear stress curves are presented at 5 Hz frequency and the Unit of Pa. From the shear stress curves the friction data, i.e. peak, dynamic and reactivation friction, have been picked manually and are presented as data pairs (normal stress & respective shear strength). Matlab-based regression analysis of these friction data by means of (a) multilinear regression of all data pairs and (b) mutual regression of two data pairs constrains the material shear failure envelope characterized by friction coefficient (slope of regression line) and cohesion (y-axis intercept of regression line). The results are presented by friction plots.
Each material sample corresponds to three files: shear stress curves (xls/txt format), friction data (txt format), friction plots (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table RSTDataOverview.
Cited reference: Schulze, D. (1994), Entwicklung und Anwendung eines neuartigen Ringschergerätes. Aufbereitungstechnik 35 (10), 524-535.
spinning wheel Loading next page