6 documents found in 312ms
# 1
Krysanova, Valentina • Hattermann, Fred • Aich, Valentin • Alemayehu, Tadesse • Arheimer, Berit • (et. al.)
Abstract: The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a set of consistent, multi-sector, multi-scale climate-impact simulations, based on scientifically and politically-relevant historical and future scenarios. This framework serves as a basis for robust projections of climate impacts, as well as facilitating model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. It also provides a unique opportunity to consider interactions between climate change impacts across sectors. ISIMIP2a is the second ISIMIP simulation round, focusing on historical simulations (1971-2010) of climate impacts on agriculture, fisheries, permafrost, biomes, regional and global water and forests. This will serve as a basis for model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. In the regional water sector, future simulations of climate-change impacts were also carried out, using climate data from five global climate models (GCMs: HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2M and NorESM1-M) for the four Representative Concentration Pathways (RCPs: RCP2.6, RCP4.5, RCP6.0 and RCP8.5). The focus topic for ISIMIP2a is model evaluation and validation, in particular with respect to the representation of impacts of extreme weather events and climate variability. During this phase, four common global observational climate data sets were provided across all impact models and sectors. In addition, appropriate observational data sets of impacts for each sector were collected, against which the models can be benchmarked. Access to the input data for the impact models is provided through a central ISIMIP archive (see https://www.isimip.org/gettingstarted/#input-data-bias-correction). This entry refers to the ISIMIP2a simulation data from regional hydrology models (river basins in brackets):HBV-CMA (Yangtze)HBV-IWW (Tagus)HBV-JLU (Rhine, Ganges, Mississippi)HBV-PIK (Rhine, Niger, Yellow, Blue Nile, Amazon)HYMOD-JLU (Rhine, Ganges, Mississippi)HYMOD-UFZ (Rhine, Niger, Blue Nile, Ganges, Yellow, Darling, Mississippi, Amazon)HYPE (Rhine, Tagus, Niger, Ganges, Lena, Mackenzie)mHM (Rhine, Niger, Blue Nile, Ganges, Yellow, Darling, Mississippi, Amazon)SWAP (Rhine, Tagus, Niger, Ganges, Yellow, Yangtze; Lena, Darling, MacKenzie, Mississippi, Amazon)SWAT (Yangtze; Darling; Blue Nile; Amazon; Mississippi; Niger)SWIM (Rhine, Yellow, Mississippi; Niger; Lena; Tagus; Blue Nile; Yangtze; Ganges, Amazon)VIC (Tagus, Blue Nile, Yellow, Lena, Darling, Amazon, MacKenzie; Rhine, Niger, Mississippi; Ganges; Yangtze)VIP (Yellow)WaterGAP3 (Rhine, Tagus, Niger, Blue Nile, Ganges, Yellow, Lena, Mississippi)ECOMAG (Lena, MacKenzie)
The ISIMIP2a water (regional) outputs are based on simulations from 15 regional hydrology models (see listing) according to the ISIMIP2a protocol (https://www.isimip.org/protocol/#isimip2a). The models simulate hydrological processes and dynamics (part of the models also considering human water abstractions and reservoir regulation) based on climate and physio-geographical information. A more detailed description of the models and model-specific amendments of the protocol are available here: https://www.isimip.org/impactmodels/.
# 2
Gosling, Simon • Müller Schmied, Hannes • Betts, Richard • Chang, Jinfeng • Ciais, Philippe • (et. al.)
Abstract: The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a set of consistent, multi-sector, multi-scale climate-impact simulations, based on scientifically and politically-relevant historical and future scenarios. This framework serves as a basis for robust projections of climate impacts, as well as facilitating model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. It also provides a unique opportunity to consider interactions between climate change impacts across sectors. ISIMIP2a is the second ISIMIP simulation round, focusing on historical simulations (1971-2010 approx.) of climate impacts on agriculture, fisheries, permafrost, biomes, regional and global water and forests. This may serve as a basis for model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. The focus topic for ISIMIP2a is model evaluation and validation, in particular with respect to the representation of impacts of extreme weather events and climate variability. During this phase, four common global observational climate data sets were provided across all impact models and sectors. In addition, appropriate observational data sets of impacts for each sector were collected, against which the models can be benchmarked. Access to the input data for the impact models is provided through a central ISIMIP archive (see https://www.isimip.org/gettingstarted/#input-data-bias-correction). This entry refers to the ISIMIP2a simulation data from global hydrology models: CLM4, DBH, H08, JULES_W1, JULES_B1, LPJmL, MATSIRO, MPI-HM, ORCHIDEE, PCR-GLOBWB, SWBM, VIC, WaterGAP2.
The ISIMIP2a water (global) outputs are based on simulations from 13 global hydrology models (see listing) according to the ISIMIP2a protocol (https://www.isimip.org/protocol/#isimip2a). The models simulate hydrological processes and dynamics (part of the models also considering human water abstractions and reservoir regulation) based on climate and physio-geographical information. A more detailed description of the models and model-specific amendments of the protocol are available here: https://www.isimip.org/impactmodels/.
# 3
Schröter, Kai • Rivas Lopez, Maria del Rocio • Nguyen, Viet Dung • Wortmann, Michael • Liersch, Stefan • (et. al.)
Abstract: This data set provides a set of residential flood loss maps (ESRI Shapefiles) for the German part of the Danube catchment for current and future climate based on a stochastic event set of flood hazard footprints (Schröter et al. 2017; http://doi.org/10.5880/GFZ.5.4.2017.003). The multi-polygon maps provide flood loss in EUR for residential land use areas according to the ATKIS (Authoritative Topographic Cartographic Information System) codes residential areas (2111) and areas of mixed use (2113), (BKG GEODATENZENTRUM: ATKIS-Basis-DLM, 2005). Loss values are calculated using the FloodLossEstimationMOdel for the residential sector (FLEMOps+r) developed by Elmer et al. (2010) in combination with exposure data based on total replacement costs for residential buildings (Kleist et al., 2006). Asset values with a spatial resolution corresponding to the underlying inundation depth maps of the stochastic event set (100x100 m) have been derived by applying a binary disaggregation method and using the digital basic landscape model ATKIS as ancillary information (Wünsch et al. 2009). The flood event sets are derived for the historical period (1970-1990) and two RCPs (4.5 and 8.5) for the near future (2020-2049) and far future (2070-2099) for four CORDEX models. These flood event sets are created within continuous long-term simulations of a coupled model chain including the IMAGE stochastic multi-variable, multi-site weather generator, the eco-hydrological model SWIM and 1D river network coupled with 2D hydro-numeric hinterland inundation model, see Schröter et al. (2017) for further details The data have been produced within the OASIS+ demonstrator project 'Future Danube Multi Hazard and Risk Model' funded by Climate-KIC in the period from January 2016 to December 2017. Key features:• Flood loss maps for residential areas in the German part of the Danube catchment from stochastic flood event sets for current and future climate.• High spatial resolution for ATKIS residential land use areas intersected with 100x100 m inundation depth maps.• Flood loss scenarios for historical period (1970-1990) and two RCPs (4.5 and 8.5) for the near future (2020-2049) and far future (2070-2099) from four CORDEX models Key usage:• Large-scale flood risk assessment• Future flood risk assessment• Flood risk management with long-term perspective A full description of the data provenance and specification is given in the README_Schroeter-et-al-2017-004.txt file available in the data download section at this DOI Landing Page.
# 4
Schröter, Kai • Rivas Lopez, Maria del Rocio • Nguyen, Viet Dung • Wortmann, Michael • Liersch, Stefan • (et. al.)
Abstract: This data set provides a stochastic event set of flood inundation depth maps (fluvial flood hazard footprints) for the German part of the Danube catchment for current and future climate in GEOTIFF format.. The maps provide inundation depth information in cm above ground level on a 100 m grid along the major rivers (4150 km) based on 2D hydro-numeric simulations. Flood event sets are derived for the historical period (1970-1990) and two RCPs (4.5 and 8.5) for the near future (2020-2049) and far future (2070-2099) for four CORDEX models. These flood event sets are created within continuous long-term simulations of a coupled model chain including the IMAGE stochastic multi-variable, multi-site weather generator, the eco-hydrological model SWIM and 1D river network coupled with 2D hydro-numeric hinterland inundation model. 10,000 years of continuous daily simulation of meteorological fields are available for each time period, rcp and climate model. The current version of the flood inundation data sets includes 100 years of simulations. 1D model cross section geometries are based on 10m DEM (BKG), adjustment of dike heights in model calibration. 2D hinterland simulation using LISFLOOD-FP inertia model on a 100m grid resampled from 10 m DEM. Key usages of the data are large-scale flood risk assessment, future flood risk assessment and flood risk management with long-term perspective. The data have been produced within the OASIS+ demonstrator project 'Future Danube Multi Hazard and Risk Model' funded by Climate-KIC in the period from January 2016 to December 2017.
Map products (GEOTIFF) • wd_x.tif: Inundation depth map of maximum inundation depth (cm.) for one flood event from the stochastic event set. • wd_max.tif: Raster indicating the maximum water depth of inundation (cm) of each pixel in the simulation of 100 years for one scenario and model. • freq_flood.tif: Inundation frequency map indicating the number of flooding events for each pixel from a within a simulation of 100 years for one scenario and model. Scenario specifications: CMxRCPyTz T0: reference time period (1970-1999) T1: near future (2020 – 2049) T2: far future (2070 – 2099) RCP4.5: representative concentration pathway 4.5 RCP8.5: representative concentration pathway 8.5 CM1: ICHEC_KNMI, ICHEC_EC,EARTH, Irish centre for high end computing, RACMO_22E_v1, Dutch Meteorological Institute (KNMI) ensemble: r1i1p1 CM2: ICHEC_SMHI, ICHEC_EC_EARTH, Irish centre for high end computing, RCA4_v1, Swedish Meteorological Institute (SMHI) ensemble: r12i1p1 CM3: MOHC_SMHI, HadGEM2-ES, Met Office Hadley Centre UK, RCA4_v1, Swedish Meteorological Institute (SMHI) ensemble: r1i1p1 CM4: MPI, MPI-M-MPI-ESM-LR, Max Planck Institute for Meteorology, REMO2009, MPI and CSC (climate service centre) ensemble: r1i1p1
# 5
Vogel, Kristin • Laudan, Jonas • Sieg, Tobias • Rözer, Viktor • Winter, Benjamin • (et. al.)
Abstract: A severe flash flood event hit the town of Braunsbach (Baden-Württemberg, Germany) on the evening of May 29, 2016, heavily damaging and destroying several dozens of buildings. It was only one of several disastrous events in Central Europe caused by the low-pressure system “Elvira”. The DFG Research Training Group “Natural hazards and risks in a changing world” (NatRiskChange, GRK 2043/1) at the University of Potsdam investigated the Braunsbach flash flood. In this context damage data for 94 affected buildings, describing building characteristics, the degree of impact and the caused damage, were collected ten days after the flood event and provide the basis for damage assessment studies (Agarwal et al., 2017; Laudan et al., 2017, Vogel et al., 2017).
# 6
Francke, Till • Foerster, Saskia • Brosinsky, Arlena • Sommerer, Erik • López-Tarazón, José A. • (et. al.)
Abstract: A comprehensive hydro-sedimentological dataset for the Isábena catchment, NE Spain, for the period 2010-2016 is presented to analyse water and sediment fluxes in a Mediterranean meso-scale catchment. The dataset includes rainfall data from twelve rain gauges distributed within the study area complemented by meteorological data of twelve official meteo-stations. It comprises discharge data derived from water stage measurements as well as suspended sediment concentrations (SSC) at six gauging stations of the Isábena river and its sub-catchments. Soil spectroscopic data from 351 suspended sediment samples and 152 soil samples were collected to characterize sediment source regions and sediment properties via fingerprinting analyses. The Isábena catchment (445 km²) is located in the Southern Central Pyrenees ranging from 450 m to 2,720 m in elevation, together with a pronounced topography this leads to distinct temperature and precipitation gradients. The Isábena river shows marked discharge variations and high sediment yields causing severe siltation problems in the downstream Barasona reservoir. Main sediment source are badland areas located on Eocene marls that are well connected to the river network. The dataset features a wide set of parameters in a high spatial and temporal resolution suitable for advanced process understanding of water and sediment fluxes, their origin and connectivity, sediment budgeting and for evaluating and further developing hydro-sedimentological models in Mediterranean meso-scale mountainous catchments. The data is available in .csv format folllowing the CUAHSI Community Observations Data Model (ODM) as .zip files via this DOI Landing Page and directly from the CUASI HIS Database via http://hydroportal.cuahsi.org/isabena/cuahsi_1_1.asmx?WSDL. The data are available in four thematic zip folders:(1) hydro (hydrological data): water stage (manual readings and automatically recorded), river discharge (meterings and converted from stage); (2) meteo (meteorological data): rainfall, temperature, radiation, humidity;(3) sediment (sedimentological data): turbidity, suspended sediment concentration (from samples and from turbidity), sediment and soil reflectance spectra; (4) meta (metadata) with the description of the different datafiles relevant for this dataset according to the CUAHSI HIS Standards. For more detailed information, please read the user guide on cloud publications with the CUAHSI Water Dater Center (UserGuide.pdf) or the ODM guide for uploading data using CUAHSI´s ODM uploader (ODMGuide.xlsx in folder ODM_Guide_2017.zip).
spinning wheel Loading next page