90 documents found in 382ms
# 1
Ziegler, Moritz • Heidbach, Oliver
Abstract: The distribution of data records for the maximum horizontal stress orientation S_Hmax in the Earth’s crust is sparse and very unequally. To analyse the stress pattern and its wavelength and to predict the mean S_Hmax orientation on regular grids, statistical interpolation as conducted e.g. by Coblentz and Richardson (1995), Müller et al. (2003), Heidbach and Höhne (2008), Heidbach et al. (2010) or Reiter et al. (2014) is necessary. Based on their work we wrote the Matlab® script Stress2Grid that provides several features to analyse the mean S_Hmax pattern. The script facilitates and speeds up this analysis and extends the functionality compared to the publications mentioned before. This script is the update of Stress2Grid v1.0 (Ziegler and Heidbach, 2017). It provides two different concepts to calculate the mean S_Hmax orientation on regular grids. The first is using a fixed search radius around the grid points and computes the mean S_Hmax orientation if sufficient data records are within the search radius. The larger the search radius the larger is the filtered wavelength of the stress pattern. The second approach is using variable search radii and determines the search radius for which the standard deviation of the mean S_Hmax orientation is below a given threshold. This approach delivers mean S_Hmax orientations with a user-defined degree of reliability. It resolves local stress perturbations and is not available in areas with conflicting information that result in a large standard deviation. Furthermore, the script can also estimate the deviation between plate motion direction and the mean S_Hmax orientation. The script is fully documented by the accompanying WSM Technical Report 19/02 (Ziegler and Heidbach, 2019) which includes a changelog in the beginning.
# 2
Ziegler, Moritz • Heidbach, Oliver
Abstract: The distribution of data records for the maximum horizontal stress orientation SHmax in the Earth’s crust is sparse and very unequally. In order to analyse the stress pattern and its wavelength or to predict the mean SHmax orientation on a regular grid, statistical interpolation as conducted e.g. by Coblentz and Richardson (1995), Müller et al. (2003), Heidbach and Höhne (2008), Heidbach et al. (2010) or Reiter et al. (2014) is necessary. Based on their work we wrote the Matlab® script Stress2Grid that provides several features to analyse the mean SHmax pattern. The script facilitates and speeds up this analysis and extends the functionality compared to aforementioned publications. The script is complemented by a number of example and input files as described in the WSM Technical Report (Ziegler and Heidbach, 2017, http://doi.org/10.2312/wsm.2017.002). The script provides two different concepts to calculate the mean SHmax orientation on a regular grid. The first is using a fixed search radius around the grid point and computes the mean SHmax orientation if sufficient data records are within the search radius. The larger the search radius the larger is the filtered wavelength of the stress pattern. The second approach is using variable search radii and determines the search radius for which the variance of the mean SHmax orientation is below a given threshold. This approach delivers mean SHmax orientations with a user-defined degree of reliability. It resolves local stress perturbations and is not available in areas with conflicting information that result in a large variance. Furthermore, the script can also estimate the deviation between plate motion direction and the mean SHmax orientation.
# 3
Geiger, Tobias • Frieler, Katja • Bresch, David N.
Abstract: Tropical cyclones (TCs) pose a major risk to societies worldwide. While data on observed cyclones tracks (location of the center) and wind speeds is publicly available these data sets do not contain information about the spatial extent of the storm and people or assets exposed. Here, we apply a simplified wind field model to estimate all areas (grid cells) exposed to wind speeds above 34 knots. Based on available spatially-explicit data on population densities and Gross Domestic Product (GDP) we estimate 1) the number of people and 2) the sum of assets exposed to above tropical storm force wind speeds for temporal changes in historical distribution of population and assets (TCE-hist) and assuming fixed 2015 patterns (TCE-2015). The associated spatially-explicit exposure data (TCE-DAT) covers the period 1950 to 2015. It is considered key information to 1) assess the contribution of climatological versus socio-economic drivers of changes in exposure to tropical cyclones, 2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and 3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We validate the adequateness of our methodology by comparing our exposure estimate to estimated exposure obtained from reported wind fields available since 1988 for the United States. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders. Files included in the zip folder: (1) TCE-DAT_single_events_historical.zip: Zipped archive containing 2707 files with exposed population and assets by grid cell using historical socio-economic exposure estimates.(2) TCE-DAT_single_events_2015.zip: Zipped archive containing 2713 files with exposed population and assets by grid cell using fixed socio-economic exposure at 2015 values.(3) Data-description_TCE-DAT_2017.008.pdf: full description of the data set including information on data sources and the description of variables/ data columns Additional information on each TC event in the zipped archive (e.g. TC name, NatCatSERVICE_ID, genesis_basin, aggregated exposure estimates by country) are available in the exposure data sets aggregated on country-event level (see Geiger et al., 2017; http://doi.org/10.5880/pik.2017.005 for details).
# 4
Geiger, Tobias • Frieler, Katja • Bresch, David N.
Abstract: Tropical cyclones (TCs) pose a major risk to societies worldwide. While data on observed cyclones tracks (location of the center) and wind speeds is publicly available these data sets do not contain information on the spatial extent of the storm and people or assets exposed. Here, we provide a collection of tropical cyclone exposure data (TCE-DAT) derived with the help of spatially-explicit data on population densities and Gross Domestic Product (GDP), also available at http://doi.org/10.5880/pik.2017.007. Up to now, this collection contains: 1) A global data set of tropical cyclone exposure accumulated to the country/event level http://doi.org/10.5880/pik.2017.0052) A global data set of spatially-explicit tropical cyclone exposure available for all TC events since 1950 http://doi.org/10.5880/pik.2017.008 TCE-DAT is considered key information to 1) assess the contribution of climatological versus socioeconomic drivers of changes in exposure to tropical cyclones, 2) estimate changes in vulnerability from the difference in exposure and reported damages and calibrate associated damage functions, and 3) build improved exposure-based predictors to estimate higher-level societal impacts such as long-term effects on GDP, employment, or migration. We expect that the free availability of the underlying model and TCE-DAT will make research on tropical cyclone risks more accessible to non-experts and stakeholders.
# 5
van den Ende, Martijn
Abstract: Intergranular pressure solution creep is an important deformation mechanism in the Earth’s crust. The phenomenon has been frequently studied and several analytical models have been proposed that describe its constitutive behavior. These models require assumptions regarding the geometry of the aggregate and the grain size distribution in order to solve for the contact stresses, and often neglect shear tractions. Furthermore, analytical models tend to overestimate experimental compaction rates at low porosities, an observation for which the underlying mechanisms remain to be elucidated. Here we present a conceptually simple, 3D Discrete Element Method (DEM) approach for simulating intergranular pressure solution creep that explicitly models individual grains, relaxing many of the assumptions that are required by analytical models. The DEM model is validated against experiments by direct comparison of macroscopic sample compaction rates. Furthermore, the sensitivity of the overall DEM compaction rate to the grain size and applied stress is tested. The effects of the interparticle friction and of a distributed grain size on macroscopic strain rates are subsequently investigated. Overall, we find that the DEM model is capable of reproducing realistic compaction behavior, and that the strain rates produced by the model are in good agreement with uniaxial compaction experiments. Characteristic features, such as the dependence of the strain rate on grain size and applied stress, as predicted by analytical models, are also observed in the simulations. DEM results show that interparticle friction and a distributed grain size affect the compaction rates by less than half an order of magnitude. The zip-file Van-den-Ende_2017.018.zip contains several folders with raw data from the laboratory experiments, output data from Discrete Element Method simulations, and Python 2.7 script files that read and process these data. All data are stored in ASCII format.
# 6
Trippetta, Fabio • Carpenter, Brett M • Mollo, Silvio • Scuderi, Marco M. • Scarlato, Piergiorgio • (et. al.)
Abstract: Here we report the raw data of the physical properties of carbonate samples collected along the Monte Maggio normal Fault (MMF), a regional structure (length ~10 km and displacement ~500 m) located within the active system of the Apennines (Italy). In particular, we report results coming from large cores (100 mm in diameter and up to 20 cm long) drilled perpendicular to the fault plane made of Calcare Massiccio (massive limestone) and Bugarone fm (limestone with 8.3 % of clay). From these large cores, we obtained smaller cores, 38 mm in diameter both parallel and perpendicular to the fault plane, that have been used for experiments. We have divided the rock samples in four categories following the fault architecture. The four structural domains of the fault are:1) the hangingwall (HW) made of Bugarone fm that is still preserved in some portions of the fault, 2) a Cemented Cataclasite (CC) and 3) a Fault Breccia (FB) that characterize the cataclastic damage zones and 4) the correspondent undeformed protolith of the footwall block made of Calcare Massiccio. Raw data reported here are those used for drawing Figures 5, 6, 8 and 9 of the paper “Physical and transport property variations within carbonate- bearing fault zones: Insights from the Monte Maggio Fault (central Italy)”, http://doi.org/10.1002/ 2017GC007097 by Trippetta et al. Dataset_Fig05.txt reports P- and S-wave velocities (in km/s) of the described samples at pressure from 0.1 MPa (ambient pressure) up to 100 MPa at ambient temperature in dry conditions and the corresponding Vp/Vs ratio. Experiments have been performed by using the permeameter at the HP-HT Laboratory of experimental Volcanology and Geophysics at INGV (Rome). Dataset_Fig06.txt reports permeability data (in m^2) on the same type of samples of fig05 for the same range of confining pressure at ambient temperature. Pore pressure values athletes each confining pressure step are indicated in the file. Data have been again acquired with the permeameter. Dataset_Fig08.txt reports P-wave velocity data (in km/s) vs depth (in m), recorded on the portion that crossed the Calare Massiccio fm of three boreholes drilled in the Apennines: Varoni 1, Monte Civitello 1 and Daniel1. Data have been obtained by digitalizing each pdf file of the boreholes mentioned above, that are available at http://unmig.sviluppoeconomico.gov.it/videpi/videpi.asp. Once digitalized, respect to the original pdf file, velocity data have been simply converted from um/f to km/s. Dataset_Fig09.txt reports values of the maximum, minimum and average values of Critical fault nucleation length (in m) at each corresponding depth (in m) and applied confining pressure (in MPa). Critical nucleation lengths have been calculated by using the equations described in the text of the Trippetta et al paper and by using the elastic parameters calculated from data reported here. Data on earthquakes-depth distribution of the 2009 L'Aquila sequence can be found on Chiaraluce et al. (2011).
# 7
Kennett, Douglas J. • Breitenbach, Sebastian F. M. • Aquino, Valorie V. • Lechleitner, Franziska • Ridley, Harriet E. • (et. al.)
Abstract: The proxy record is derived from stalagmite YOK-I from the Yok Balum Cave, Belize. Stalagmite YOK-I was collected in June 2006, ca. 160 m from the western cave entrance. Carbonate was actively precipitating on the tip of this 606.9-mm-long stalagmite when it was collected. The stable isotope climate record covers only the upper 415 mm, while the lower stalagmite section is less suitable for stable isotope studies and was not included in this investigation. Over 4,200 δ18O and δ13C measurements were performed on the upper 415 mm of YOK-I and dated between 40 BC and 2006 AD. The samples were continuously milled at 0.1 mm increments and, depending on growth rate changes in YOK-I, the temporal resolution of the isotopic data fluctuates from 0.01 and 3.68 yrs/0.1 mm, with an average resolution of 0.49 yrs/0.1 mm. Earlier versions of the dataset have been published at the NOAA palaeoclimate data server using a slightly different chronology (Kennett et al., Science 2012, DOI:10.1126/science.1226299). In the study of Ridley et al. (Nat Geo 2015, DOI:10.1038/ngeo2353), we have tuned the chronology of YOK-I with the more precise one of the stalagmite YOK-G. These new data is provided as version 2 in the files YOK-I_d18O_v2.csv (for δ18O) and YOK-I_d13C_v2.csv (for δ13C), consisting of 4047 isotope measurements. Kernel filtering was applied to resample the time series to equidistant annual resolution (Smirnov et al, Sci Rep XXX, DOI: XXX), covering the time span from 15 BC to 2005 AD, resulting in 2021 data values. These filtered versions of the data are provided as files YOK-I_d18O_kernelfiltered.csv and YOK-I_d13C_kernelfiltered.csv. In all files, the first column consists of the age (in yr AD) and the second column (separated from the first column by a semicolon) is the corresponding isotope value (in permil VPDB). The data is presented as four .csv files in a .zip folder.
# 8
Reyer, Christopher • Asrar, Gassem • Betts, Richard • Chang, Jinfeng • Chen, Min • (et. al.)
Abstract: The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a set of consistent, multi-sector, multi-scale climate-impact simulations, based on scientifically and politically-relevant historical and future scenarios. This framework serves as a basis for robust projections of climate impacts, as well as facilitating model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. It also provides a unique opportunity to consider interactions between climate change impacts across sectors. ISIMIP2a is the second ISIMIP simulation round, focusing on historical simulations (1971-2010) of climate impacts on agriculture, fisheries, permafrost, biomes, regional and global water and forests. This will serve as a basis for model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. The focus topic for ISIMIP2a is model validation, in particular with respect to the representation of impacts of extreme weather events and climate variability. During this phase, four common global observational climate data sets were provided across all impact models and sectors. In addition, appropriate observational data sets of impacts for each sector were collected, against which the models can be benchmarked. Access to all these data is provided through a central ISIMIP archive (see https://www.isimip.org/gettingstarted/#input-data-bias-correction). The ISIMIP2a biome outputs are based on simulations from 8 global vegetation (biomes) models (CARAIB, DLEM, JULES-B1, LPJ-GUESS, LPJmL, ORCHIDEE, VEGAS, VISIT) according to the ISIMIP2a protocol (https://www.isimip.org/protocol/#isimip2a).
The ISIMIP2a biome outputs are based on simulations by different global vegetation models (CARAIB, DLEM, JULES-UoE, LPJ-GUESS, LPJmL, ORCHIDEE, VEGAS, VISIT) following the ISIMIP2a protocol. The biome models simulate biogeochemical processes, biogeography and ecosystem dynamics of natural vegetation and managed lands based on soil, climate and land-use information. A more detailed description of the models and model-specific amendments of the protocol are available here: https://www.isimip.org/impactmodels/.
# 9
Gosling, Simon • Müller Schmied, Hannes • Betts, Richard • Chang, Jinfeng • Ciais, Philippe • (et. al.)
Abstract: The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) provides a framework for the collation of a set of consistent, multi-sector, multi-scale climate-impact simulations, based on scientifically and politically-relevant historical and future scenarios. This framework serves as a basis for robust projections of climate impacts, as well as facilitating model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. It also provides a unique opportunity to consider interactions between climate change impacts across sectors. ISIMIP2a is the second ISIMIP simulation round, focusing on historical simulations (1971-2010 approx.) of climate impacts on agriculture, fisheries, permafrost, biomes, regional and global water and forests. This may serve as a basis for model evaluation and improvement, allowing for improved estimates of the biophysical and socio-economic impacts of climate change at different levels of global warming. The focus topic for ISIMIP2a is model evaluation and validation, in particular with respect to the representation of impacts of extreme weather events and climate variability. During this phase, four common global observational climate data sets were provided across all impact models and sectors. In addition, appropriate observational data sets of impacts for each sector were collected, against which the models can be benchmarked. Access to the input data for the impact models is provided through a central ISIMIP archive (see https://www.isimip.org/gettingstarted/#input-data-bias-correction). This entry refers to the ISIMIP2a simulation data from global hydrology models: CLM4, DBH, H08, JULES_W1, JULES_B1, LPJmL, MATSIRO, MPI-HM, ORCHIDEE, PCR-GLOBWB, SWBM, VIC, WaterGAP2.
The ISIMIP2a water (global) outputs are based on simulations from 13 global hydrology models (see listing) according to the ISIMIP2a protocol (https://www.isimip.org/protocol/#isimip2a). The models simulate hydrological processes and dynamics (part of the models also considering human water abstractions and reservoir regulation) based on climate and physio-geographical information. A more detailed description of the models and model-specific amendments of the protocol are available here: https://www.isimip.org/impactmodels/.
# 10
Quinteros, Javier
Abstract: This service provides routing information for distributed data centres, in the case where multiple different seismic data centres offer access to data and products using compatible types of services. Examples of the data and product objects are seismic timeseries waveforms, station inventory, or quality parameters from the waveforms. The European Integrated Data Archive (EIDA) is an example of a set of distributed data centres (the EIDA „nodes“). EIDA have offered Arclink and Seedlink services for many years, and now offers FDSN web services, for accessing their holdings. In keeping with the distributed nature of EIDA, these services could run at different nodes or elsewhere; even on computers from normal users. Depending on the type of service, these may only provide information about a reduced subset of all the available waveforms. To be effective, the Routing Service must know the locations of all services integrated into a system and serve this information in order to help the development of smart clients and/or services at a higher level, which can offer the user an integrated view of the entire system (EIDA), hiding the complexity of its internal structure. The service is intended to be open and able to be queried by anyone without the need of credentials or authentication.
spinning wheel Loading next page