5 documents found in 268ms
# 1
Rudolf, Michael • Boutelier, David • Rosenau, Matthias • Schreurs, Guido • Oncken, Onno
Abstract: The datasets that are presented here have been obtained to provide a rheological benchmark of silicones used in various analog modeling laboratories. The data contains rheological measurements of several polydimethylsiloxanes (PDMS) and filled silicone oils. The samples of eight different silicone oils originate from seven laboratories. Each sample was analyzed using rotational controlled shear rate tests (CSR), temperature sweep test, and dynamical oscillation tests (amplitude and frequency sweeps). Detailed information on the analysis and interpretation of the data is found in Rudolf, et al. (2016).The data is provided as comma-separated files in *.csv format. Each file contains multiple measurements, each starting with own data series information that is followed by the actual measurement in the form of a table including the individual units of measure. Furthermore the results from ReSpect (Takeh & Shanbhag, 2013) for the discrete Maxwell relaxation spectra are provided. All files can be opened using a text-editor, MS Excel, or equivalent software.More information about the datasets is available in the file Explanations_Rudolf-et-al-2016.pdf, an overview on the available files in the List_of_Files_Rudolf-et-al-2016 (in .pdf and .xlsx format). All information and overview files are also included in Rudolf-et-al-2016_datasets.zip.
# 2
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides compaction data from axial testing on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by uniaxial, confined compression testing using the Axial Tester at GFZ Potsdam’s analogue laboratory for tectonic modelling . Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the container (jar). Up to 2000 kPa of uniaxial compression has been applied in 50 cycles. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting stress curve data are presented at 20 Hz frequency and the Unit of N. From the stress curves the compaction data have been derived. These correspond to the normalized sample height (normalized to the initial height) of the sample at the beginning of each cycle and are characterized by an exponential decrease over the 50 cycles. From that the following compaction parameters are derived: total compaction (shortening after 50 cycles Ct=eps50), the compaction during the first cycle (eps1) as well as the compaction index (Ci = eps1/eps50). Compaction data are finally visualized in the compactionDataPlot file.Each material sample has a relation to three files: stress curve data (txt format, 50 files per sample), compaction data (in xls and txt format), compaction plot (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table CompactionDataOverview.xls.
# 3
Klinkmüller, Matthias • Kemnitz, Helga • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides images from scanning electron microscope (SEM) photography of natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by using the scanning electron microscope facility at GFZ Potsdam. The selected grains were mounted on aluminium stubs supplied with conductive carbon tabs and gold-palladium coated. The study was performed using a ZEISS DSM 692 (in 2008) and (in 2009) a ZEISS ULTRA 55 Plus Schottky-type field emission scanning electron microscope (FESEM) at acceleration voltages from 7 to 20 kV. In both cases, we used the secondary (SE) electron signals providing the best spatial resolution of the sample morphology.The resulting SEM images are presented. From each sample several magnifications are provided ranging from overview (50x-100x) to particle portraits (100x-500x) and, for glass beads, to surface landscapes (500x-10.000x).
An overview of all files of the data set is given in the table SEMDataOverview.
# 4
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides sieve data (grain size distributions) on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by sieving using a RETSCH Vibratory Sieve Shaker AS 200 basic at GFZ Potsdam’s analogue laboratory for tectonic modelling. Mesh sizes used were 630, 400, 355, 224, 125, and 63 micrometer. 1 kg of each sample material has been sieved for 4 hours at maximum Amplitude (3 mm). Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting sieve analysis data are presented as fractions of 1 kg.
An overview of all files of the data set is given in the table SieveDataOverview.
# 5
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides friction data from ring shear test (RST) on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994) at GFZ Potsdam’s analogue laboratory for tectonic modelling. Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the shear cell. Measurements have been done at normal loads (normal stress) of 430, 860, 1290, 1720, and 2150 Pa and shear velocity of 3 mm/min typical of experimental conditions. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%). The measurements presented here correspond to internal friction, shearing inside the material. Data for so-called basal or wall friction, i.e. shearing against a fixed plate, are available on request.The resulting shear stress curves are presented at 5 Hz frequency and the Unit of Pa. From the shear stress curves the friction data, i.e. peak, dynamic and reactivation friction, have been picked manually and are presented as data pairs (normal stress & respective shear strength). Matlab-based regression analysis of these friction data by means of (a) multilinear regression of all data pairs and (b) mutual regression of two data pairs constrains the material shear failure envelope characterized by friction coefficient (slope of regression line) and cohesion (y-axis intercept of regression line). The results are presented by friction plots.
Each material sample corresponds to three files: shear stress curves (xls/txt format), friction data (txt format), friction plots (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table RSTDataOverview.
Cited reference: Schulze, D. (1994), Entwicklung und Anwendung eines neuartigen Ringschergerätes. Aufbereitungstechnik 35 (10), 524-535.
spinning wheel Loading next page