16 documents found in 423ms
# 1
Albert, Francisca
Abstract: This data set includes movies and images of sandbox experiments aiming at understainding the process of subduction erosion at active plate margins (Albert, 2013). Four experiments are documented by means of movies showing the evolution of a strong wedge (sand-sugar mix, “Reference experiment.avi”), a weak wedge (sand only, “F1 experiment.avi”) and two successive phases of a wedge that undergoes subduction erosion by subducting topographic highs (first stage without subducting topography= “HL.1 experiment.avi” and second stage with subducting topography = “HL.2 experiment.avi”). Images of preliminary tests and experiments not considered in Albert (2013) are given in “Appendix A2.2.pdf” (small box experiments) and “Appendix A3.3.pdf” (experiments varying friction and slope).
# 2
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (type “G23”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust (e,g. Kenkmann et al., 2007; Contardo et al., 2011; Reiter et al., 2011;Warsitzka et al., 2013; Santimano,et al., 2015; Warsitzka et al., 2015; Ritter et al., 2016; 2018 a,b). The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.73, µD = 0.57 and µR = 0.65, respectively. Cohesions C are in the order of 10 – 120 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity v. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 3
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (“G12”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust. The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.69, µD = 0.55 and µR = 0.62, respectively. Cohesions C are in the order of 50 – 110 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 4
Korte, Monika • Brown, Maxwell • Gunnarson, Sydney
Abstract: Global spherical harmonic paleomagnetic field model LSMOD.1 describes the magnetic field evolution from 50 to 30 ka BP based on published paleomagnetic sediment records and volcanic data. The time interval includes the Laschamp (~41 ka BP) and Mono Lake (~34 ka BP) excursions. The model is given with Fortran source code to obtain spherical harmonic magnetic field coefficients for individual epochs and to obtain time series of magnetic declination, inclination and field intensity from 49.95 to 30 ka BP for any location on Earth. For details see M. Brown, M. Korte, R. Holme, I. Wardinski and S. Gunnarson (2018): Earth's magnetic field is probably not reversing. PNAS, 115, 5111-5116.
File overviewLSMOD.1 -- ASCII file containing the time-dependent model by a list of spline basis knot points and spherical harmonic coefficients for these knot points.LSfield.f -- Fortran source code to obtain time series predictions of declination, inclination and intensity from the model file.LScoefs.f -- Fortran source code to obtain the spherical harmonic coefficients for an individual age from the time-dependent model file. The data are licenced under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0) and the Fortran Codes under the Apache License, Version 2.0. The Fortran source code should work with any standard Fortran 77 or higher compiler. Each of the two program files can be compiled separately, all required subroutines are included in the files. The model file, LSMOD.1 or LSMOD.2, is read in by the executable program and has to be in the same directory. The programs work with interactive input, which will be requested when running the program.
# 5
Reiter, Karsten • Kukowski, Nina • Ratschbacher, Lothar • Rosenau, Matthias
Abstract: This data publication includes animations and figures of eight scaled analogue models that are used to investigate the evolution of a curved mountain belt akin to the Pamir and Hindu Kush orogenic system and adjacent Tadjik basin. Crustal deformation is simulated by means of indentation of two basement blocks into a sedimentary sequence and the formation of a curved fold-and-thrust belt.The experimental set-up has two adjacent rigid indenters representing the basement blocks moving in parallel with a velocity difference (Figure 1). The slow indenter moves with a relative velocity ranging from 40 to 80% of that of the fast one. A layer of quartz sand in front of the indenters, 1 by 1 meter in size and 1.5 cm thick, represents the sedimentary basin infill. A basal detachment layer is made up of low-friction glass beads or viscous silicone oil representing weak shale or evaporates layers, respectively. The surface evolution by means of topography and strain distribution is derived from 3-D particle image velocimetry (PIV). This allows visualizing and analysing the development of the model surface during the complete model run at high spatio-temporal resolution. All details about the model set-up, modelling results and interpretation can be found in Reiter et al. (2011).The here provided additional material includes time-lapse movies showing the topographic evolution of the eight models. These visualizations are oblique views played back at 60-fold velocity for the “glass beads experiments” (gb40 to gb80) and 3600-fold velocity for the “silicone experiments” (si60, si-gb60).In addition to the experiment movies we provide a set of figures. The figures include surface views as well as cross-sections through the finite models highlighting the link between topography and internal structure of the simulated curved fold-and-thrust belts. Additionally, attribute maps of distinct morphometric measures (curvature, slope) and deformation parameters (uplift, horizontal translation) for the experiments with glass beads detachments are given. Finally, the movie “Experimenting.avi” shows in time-lapse the whole workflow of setting up, conducting and documenting an experiment, which originally required three days (for experiment si-gb60).An overview on the parameters used in the experimental series of the movie sequences is given in the explanatory file (Explanations_Reiter-et-al-2016.pdf). A full list of files is given in “list-of-files-Reiter-et-al-2016.pdf”.
# 6
Rudolf, Michael • Boutelier, David • Rosenau, Matthias • Schreurs, Guido • Oncken, Onno
Abstract: The datasets that are presented here have been obtained to provide a rheological benchmark of silicones used in various analog modeling laboratories. The data contains rheological measurements of several polydimethylsiloxanes (PDMS) and filled silicone oils. The samples of eight different silicone oils originate from seven laboratories. Each sample was analyzed using rotational controlled shear rate tests (CSR), temperature sweep test, and dynamical oscillation tests (amplitude and frequency sweeps). Detailed information on the analysis and interpretation of the data is found in Rudolf, et al. (2016).The data is provided as comma-separated files in *.csv format. Each file contains multiple measurements, each starting with own data series information that is followed by the actual measurement in the form of a table including the individual units of measure. Furthermore the results from ReSpect (Takeh & Shanbhag, 2013) for the discrete Maxwell relaxation spectra are provided. All files can be opened using a text-editor, MS Excel, or equivalent software.More information about the datasets is available in the file Explanations_Rudolf-et-al-2016.pdf, an overview on the available files in the List_of_Files_Rudolf-et-al-2016 (in .pdf and .xlsx format). All information and overview files are also included in Rudolf-et-al-2016_datasets.zip.
# 7
Brown, Maxwell • Korte, Monika • Holme, Richard • Wardinski, Ingo • Gunnarson, Sydney
Abstract: Compilation of palaeomagnetic data from sediments and volcanic rocks from 68 sites spanning 30,000 to 50,000 years ago used to create the temporally continuous global spherical harmonic geomagnetic field model LSMOD.1. This is in supplement to the paper "Earth's magnetic field is (probably not reversing" (Brown et al. 2018) A description of how the data were treated is given in SI Appendix of the associated publication. A full list of complementary data sources (references) is given is provided with the data.-----------------For the volcanics there is one filevolc.txt The headers are:Age[ka] - age in thousands of years before present (0 = 1950 AD).Error[ka] - uncertainty on the age.Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.Dec[Deg] - Declination in degrees.Inc[Deg] - Inclination in degrees.Alpha95[Deg] - 95% circular confidence limit on the directional data.F[microT] - intensity in micro Tesla.F_Error[microT] - uncertainy on the intensity in micro Tesla. -9999 - no data-----------------For the sediments there are two types of files, those that end *.txt and those that end *int.txt. *.txt - directional data with the headers: Age[ka] - age in thousands of years before present (0 = 1950 AD).Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.Dec[Deg] - Declination in degrees.Inc[Deg] - Inclination in degrees. -9999 - no data *int.txt - scaled intensity data using PADM2M (as described in Section S1.3 of SI Appendix)Age[ka] - age in thousands of years before present (0 = 1950 AD).Lat[Deg] - Latitude of site in degrees.Lon[Deg] - Longitude of site in degrees.F[microT] - Scaled intensity in micro Tesla. 6 of the sediment data sets are individual records (BLS, CHI, MIN, PYR, SIO, S01).6 of the sediment data sets are stacks of records (BBS, NAS, NPS, OBS, SBS, SAS). All details of the records are given in Table S1 and Table S2 of the SI Appendix of the associated publication.
# 8
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides compaction data from axial testing on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by uniaxial, confined compression testing using the Axial Tester at GFZ Potsdam’s analogue laboratory for tectonic modelling . Each sample has been carefully prepared by the same person and measured consistently following the same protocol. Preparation included sieving at 250 ml/min from 30 cm height into the container (jar). Up to 2000 kPa of uniaxial compression has been applied in 50 cycles. Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting stress curve data are presented at 20 Hz frequency and the Unit of N. From the stress curves the compaction data have been derived. These correspond to the normalized sample height (normalized to the initial height) of the sample at the beginning of each cycle and are characterized by an exponential decrease over the 50 cycles. From that the following compaction parameters are derived: total compaction (shortening after 50 cycles Ct=eps50), the compaction during the first cycle (eps1) as well as the compaction index (Ci = eps1/eps50). Compaction data are finally visualized in the compactionDataPlot file.Each material sample has a relation to three files: stress curve data (txt format, 50 files per sample), compaction data (in xls and txt format), compaction plot (pdf format), examples of which are shown below. An overview of all files of the data set is given in the table CompactionDataOverview.xls.
# 9
Klinkmüller, Matthias • Kemnitz, Helga • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides images from scanning electron microscope (SEM) photography of natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by using the scanning electron microscope facility at GFZ Potsdam. The selected grains were mounted on aluminium stubs supplied with conductive carbon tabs and gold-palladium coated. The study was performed using a ZEISS DSM 692 (in 2008) and (in 2009) a ZEISS ULTRA 55 Plus Schottky-type field emission scanning electron microscope (FESEM) at acceleration voltages from 7 to 20 kV. In both cases, we used the secondary (SE) electron signals providing the best spatial resolution of the sample morphology.The resulting SEM images are presented. From each sample several magnifications are provided ranging from overview (50x-100x) to particle portraits (100x-500x) and, for glass beads, to surface landscapes (500x-10.000x).
An overview of all files of the data set is given in the table SEMDataOverview.
# 10
Klinkmüller, Matthias • Schreurs, Guido • Rosenau, Matthias
Abstract: This dataset provides sieve data (grain size distributions) on natural and artificial granular materials used for experimental simulation by the analogue geodynamic modelling community (21 sands and glass beads). The material samples have been collected community-wide and analysed at GFZ Potsdam in the framework of the GeoMod2008 conference benchmark initiative. The context of data collection, details of the material samples and measuring techniques as well as interpretation and discussion of results can be found in Klinkmüller et al. (2016) to which this dataset is supplement material.
The data presented here are derived by sieving using a RETSCH Vibratory Sieve Shaker AS 200 basic at GFZ Potsdam’s analogue laboratory for tectonic modelling. Mesh sizes used were 630, 400, 355, 224, 125, and 63 micrometer. 1 kg of each sample material has been sieved for 4 hours at maximum Amplitude (3 mm). Laboratory conditions were air conditioned during all the measurements (Temperature: 23°C, Humidity: 45%).The resulting sieve analysis data are presented as fractions of 1 kg.
An overview of all files of the data set is given in the table SieveDataOverview.
spinning wheel Loading next page