5 documents found in 238ms
# 1
Mikolaj, Michal
Abstract: This software publication describes the data acquisition, processing and modelling of hydrological, meteorological and gravity time series prepared for the Argentine-German Geodetic Observatory (AGGO) in La Plata, Argentina. The corresponding output data set is available at http://doi.org/10.5880/GFZ.5.4.2018.001 (Mikolaj et al., 2018). Processed hydrological series include soil moisture, temperature, electric conductivity, and groundwater variation. The processed meteorological time series comprise air temperature, humidity, pressure, wind speed, solar short- and long-waver radiation, and precipitation. Modelling scripts include evapotranspiration, combined precipitation, and water content variation in the zone between deepest soil moisture sensor and groundwater. In addition, large-scale hydrological, oceanic as well as atmospheric effect are modelled along with the local hydrological effects. To allow for a comparison of the model outputs to observations, processing script of gravity residuals is provided as well.
# 2
Mikolaj, Michal • Güntner, Andreas • Brunini, Claudio • Wziontek, Hartmut • Gende, Mauricio • (et. al.)
Abstract: The data set contains hydrological, meteorological and gravity time series collected at Argentine-German Geodetic Observatory (AGGO) in La Plata, Argentina. The hydrological series include soil moisture, temperature, electric conductivity, soil parameters, and groundwater variation. The meteorological time series comprise air temperature, humidity, pressure, wind speed, solar short- and long-waver radiation, and precipitation. The observed hydrometeorological parameters are extended by modelled value of evapotranspiration and water content variation in the zone between deepest soil moisture sensor and the groundwater level. Gravity products include large-scale hydrological, oceanic as well as atmospheric effects. These gravity effects are furthermore extended by local hydrological effects and gravity residuals suitable for comparison and evaluation of the model performance. Provided are directly observed values denoted as Level 1 product along with pre-processed series corrected for known issues (Level 2). Level 3 products are model outputs acquired using Level 2 data. The maximal temporal coverage of the data set ranges from May 2016 up to November 2018 with some exceptions for sensors and models set up in May 2017. The data set is organized in a database structure suitable for implementation in a relational database management system. All definitions and data tables are provided in separate text files allowing for traditional use without database installation. Software related to the data acquisition, processing, and modelling can be found in a separate publication describing scripts applied to the data set presented here. The software publication is available at https://doi.org/10.5880/GFZ.5.4.2018.002 (Mikolaj, 2018)
# 3
Oeser, Ralf A. • Stroncik, Nicole • Moskwa, Lisa-Marie • Bernhard, Nadine • Schaller, Mirjam • (et. al.)
Abstract: The Chilean Coastal Cordillera features a spectacular climate and vegetation gradient, ranging from arid and unvegetated areas in the north to humid and forested areas in the south. The DFG Priority Program "EarthShape" (Earth Surface Shaping by Biota) uses this natural gradient to investigate how climate and biological processes shape the Earth's surface. We explored the critical zone, the Earth's uppermost layer, in four key sites located in desert, semidesert, mediterranean, and temperate climate zones of the Coastal Cordillera, with the focus on weathering of granitic rock. Here, we present first results from four ~2m-deep regolith profiles to document: (1) architecture of weathering zone; (2) degree and rate of rock weathering, thus the release of mineral-derived nutrients to the terrestrial ecosystems; (3) denudation rates; and (4) microbial abundances of bacteria and archaea in the saprolite. From north to south, denudation rates from cosmogenic nuclides are ~10 t km-2 yr-1 at the arid Pan de Azúcar site, ~20 t km-2 yr-1 at the semi-arid site of Santa Gracia, ~60 t km-2 yr-1 at the mediterranean climate site of La Campana, and ~30 t km-2 yr-1 at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (~26 °S) to south (~38 °S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies. The data are supplementary material to Oeser et al. (2018). All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description in the internet. The content of the eight data tables is: Table S1: Catena properties of the four primary EarthShape study areas.Table S2: Major and selected trace element concentration for bedrock samples.Table S3 Normative modal abundance of rock-forming minerals.Table S4: Major and selected trace element concentration for regolith samples and dithionite and oxalate soluble pedogenic oxides.Table S5: Weathering indices CDF and CIA, and the mass transfer coefficients (��) for major and trace elements along with volumetric strain (ɛ).Table S6: Chemical weathering and physical erosion ratesTable S7: Relative microbial abundances in saprolite of the four study areas.Table S8: Uncorrected major and trace element concentration. The data tables are provided as one Excel file with eight spreadsheets, as individual tables in .csv format in a zipped archive and as printable PDF versions in a zipped archive.
# 4
Bernhard, Nadine • Moskwa, Lisa-Marie • Schmidt, Karsten • Oeser, Ralf A. • Aburto, Felipe • (et. al.)
Abstract: The effects of climate and topography on soil physico-chemical and microbial parameters were studied along an extensive latitudinal climate gradient in the Coastal Cordillera of Chile (26° - 38°S). The study sites encompass arid (Pan de Azúcar), semiarid (Santa Gracia), mediterranean (La Campana) and humid (Nahuelbuta) climates and vegetation, ranging from arid desert, dominated by biological soil crusts (biocrusts), semiarid shrubland and mediterranean sclerophyllous forest, where biocrusts are present but do have a seasonal pattern to temperate-mixed forest, where biocrusts only occur as an early pioneering development stage after disturbance. All soils originate from granitic parent materials and show very strong differences in pedogenesis intensity and soil depth. Most of the investigated physical, chemical and microbiological soil properties showed distinct trends along the climate gradient. Further, abrupt changes between the arid northernmost study site and the other semi-arid to humid sites can be shown, which indicate non-linearity and thresholds along the climate gradient. Clay and total organic carbon contents (TOC) as well as Ah horizons and solum depths increased from arid to humid climates, whereas bulk density (BD), pH values and base saturation (BS) decreased. These properties demonstrate the accumulation of organic matter, clay formation and element leaching as key-pedogenic processes with increasing humidity. However, the soils in the northern arid climate do not follow this overall latitudinal trend, because texture and BD are largely controlled by aeolian input of dust and sea salts spray followed by the formation of secondary evaporate minerals. Total soil DNA concentrations and TOC increased from arid to humid sites, while areal coverage by biocrusts exhibited an opposite trend. Relative bacterial and archaeal abundances were lower in the arid site, but for the other sites the local variability exceeds the variability along the climate gradient. Differences in soil properties between topographic positions were most pronounced at the study sites with the mediterranean and humid climate, whereas microbial abundances were independent on topography across all study sites. In general, the regional climate is the strongest controlling factor for pedogenesis and microbial parameters in soils developed from the same parent material. Topographic position along individual slopes of limited length augmented this effect only under humid conditions, where water erosion likely relocated particles and elements downward. The change from alkaline to neutral soil pH between the arid and the semi-arid site coincided with qualitative differences in soil formation as well as microbial habitats. This also reflects non-linear relationships of pedogenic and microbial processes in soils depending on climate with a sharp threshold between arid and semi-arid conditions. Therefore, the soils on the transition between arid and semi-arid conditions are especially sensitive and may be well used as indicators of long and medium-term climate changes. Concluding, the unique latitudinal precipitation gradient in the Coastal Cordillera of Chile is predestined to investigate the effects of the main soil forming factor – climate – on pedogenic processes. The data presented here is part of the German-Chilean Priority Program “EarthShape” (Earth Surface Shaping by Biota), funded by the German Research Foundation (DFG). We provide the basic background data, which includes investigations into the influence of climate, vegetation and topography on pedogenesis and microbial abundances. The data are supplementary material to Bernhard et al. (2018). All tables are available as one Excel file, as individual tables in .csv format in a zipped archive and as PDF file. The samples are assigned with International Geo Sample Numbers (IGSN) and linked to a comprehensive sample description in the internet. The content of the five data tables is:Table S1: Soil profile field description for the EarthShape study sitesTable S2: Soil physico-chemical properties for the depth increment samples in the four study sitesTable S3: Soil physico-chemical properties for the horizon samples in the four study sitesTable S4: Relative microbial abundances in the four study sitesTable S5: Plant species and abundance (% cover) in the four study sites
# 5
Uhlig, David • Schuessler, Jan A. • Bouchez, Julien • Dixon, Jean L. • von Blanckenburg, Friedhelm
Abstract: This dataset is a supplementary dataset to the manuscript: “Uhlig, D., Schuessler, J. A., Bouchez, J. L., Dixon, J., and von Blanckenburg, F.: Quantifying nutrient uptake as driver of rock weathering in forest ecosystems by magnesium stable isotopes, Biogeosciences, 2017“. The dataset contains physicochemical parameters of stream water (pH, temperature, conductivity discharge, alkalinity) , and chemical and Mg isotope analyses of stream water, vegetation, soil, saprolite, weathered bedrock and unweathered bedrock of three headwater catchments at Providence Creek in the Southern Sierra Nevada, California, USA. Further, the dataset contains soil and saprolite weathering indicators such as the chemical depletion fraction (CDF) and mass transfer coefficients, as well as elemental regolith production fluxes, elemental net solubilisation fluxes, elemental dissolved river fluxes, elemental litterfall fluxes, nutrient recycling fluxes and elemental dissolved export efficiencies that rely on measured data reported in the above study and data from literature. These data and metrics were used to track the pathway of Mg and other nutrients through the headwater catchments at the Critical Zone Observatory of the Southern Sierra Nevada.
spinning wheel Loading next page