415 documents found in 417ms
# 371
Persits, F.M. • Ulmishek, G.F. • Steinshouer, D.W.
Abstract: Geological data sets of the Baikal region based on the USGS digital data of Asian petroleum provinces. The attributation of polygon data was partly reassigned and the maps transformed to UTM Z48, WGS 84. Source: Persits, F.M., Ulmishek, G.F., and Steinshouer, D.W. (1998): Maps showing geology, oil and gas fields, and geologic provinces of the former Soviet Union, USGS. * Detailed chronostratigraphical map with lithological information * Summarised Chronostratigraphical map with lithological information * Geological provinces
# 372
Heim, Birgit • Klump, Jens • Fagel, Natalie • Oberhänsli, Hedi
Abstract: Supplementary material to B. Heim et al. (2008): Assembly and concept of a web-based GIS within the paleoclimate project CONTINENT (Lake Baikal, Siberia)
# 373
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 374
KTB, WG Geochemistry
Abstract: The main objective of this drilling fluid analysis was the detection of inflows of formation fluids. Therefore different gases dissolved in the drilling mud were measured continuously and automatically at drill site with three different methodes (Fig.: KTB-Report 92-2 page C13). The operation principles of the mass spectrometer and the gaschromatograph have been explained by STROH et al. (1988) and FIGGEMEIER et al. (1991). The principle of radon determination is published by ERZINGER et al. (1992).
# 375
Sawatari, H.
Abstract: Major and trace elements in the 100 m drilling core samples from Lake Baikal have been determined by ICP-AES (inductively coupled plasma atomic emission spectrometry), ICP-MS (inductively coupled plasma mass spectrometry) and INAA (instrumental neutron activation analysis). In this paper, vertical distribution profiles of the determined elements are presented. Raw analytical values will be presented elsewhere. Vertical distribution patterns for Ti, Al, Fe, Mn, Ca and Pare shown in Fig.1. In the bottom surface sample (=the uppermost part of the core), the concentration of Al, Ti, Fe and Ca are relatively low and that of P is relatively high. It may indicate that relative large volume of biogenic organic substances are included in the bottom surface sample. In addition, it seems that the Mn contents are relatively low and its deviation is rather small between 60 m and 90 m from the bottom.
# 376
SAFOD
Abstract: SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 591-1447m (rel. to rig floor, 9,45m abv gnd)
# 377
SAFOD
Abstract: SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 3799-3987m (rel. to rig floor, 9,45m abv gnd)
# 378
SAFOD
Abstract: SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 3387-3799m (rel. to rig floor, 9,45m abv gnd)
# 379
SAFOD
Abstract: SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 2975-3387m (rel. to rig floor, 9,45m abv gnd)
# 380
SAFOD
Abstract: SAFOD is motivated by the need to answer fundamental questions about the physical and chemical processes controlling faulting and earthquake generation within a major plate-bounding fault. SAFOD will drill and instrument an inclined borehole across the San Andreas Fault Zone to a depth of 3.2 km, targeting a repeating microearthquake source. The drill site is located west of the vertical San Andreas Fault on a segment of the fault that moves through a combination of aseismic creep and repeating microearthquakes. It lies at the extreme northern end of the rupture zone of the 1966, Magnitude 6 Parkfield earthquake, the most recent in a series of events that have ruptured the fault five times since 1857. The Parkfield region is the most comprehensively instrumented section of a fault anywhere in the world, and has been the focus of intensive study for the past two decades. This data set contains open hole geophysical wireline logging data from 2812-3043m (rel. to rig floor, 9,45m abv gnd)
spinning wheel Loading next page