5 documents found in 107ms
# 1
Hinzen, Klaus-G. • Fleischer, Claus
Abstract: Engineering seismological models (incl. ground amplification and topographic effects) of key structures in Tiryns and Midea, Greece, will be used to test the hypothesis of seismogenic causes of the decline of the Mycenaean settlements in the 12th century BC.
# 2
Andreas Köhler • Christian Weidle • Christopher Nuth
Abstract: Climatic change is of incredible importance in the polar regions as ice-sheets and glaciers respond strongly to change in average temperature. The analysis of seismic signals (icequakes) emitted by glaciers (i.e., cryo-seismology) is thus gaining importance as a tool for monitoring glacier activity. To understand the scaling relation between regional glacier-related seismicity and actual small-scale local glacier dynamics and to calibrate the identified classes of icequakes to locally observed waveforms, a temporary passive seismic monitoring experiment was conducted in the vicinity of the calving front of Kronebreen, one of the fastest tidewater glaciers on Svalbard (Fig. 1). By combining the local observations with recordings of the nearby GEOFON station GE.KBS, the local experiment provides an ideal link between local observations at the glacier to regional scale monitoring of NW Spitsbergen. During the 4-month operation period from May to September 2013, eight broadband seismometers and three 4-point short-period arrays were operating around the glacier front of Kronebreen.
# 3
Manakou, Maria • et al
Abstract: A temporary seismic array of short-period seismometers was installed in the 8-story AHEPA hospital, located in the city of Thessaloniki, N. Greece. The scope of the survey was to assess the dynamic characteristics of the RC-building by processing ambient vibration recordings of more than 40 seismic stations installed at different positions in the building. Part of the instruments was used in a soil experiment, outside of the hospital, to study possible Soil Structure Interaction phenomena. In addition to above experiments, a site-specific survey was performed in the Volvi basin, 30km ENE of the city of Thessaloniki. The scope of this experiment was to investigate the soil properties and the geometry of the subsurface geology.
# 4
Grund, Michael • Mauerberger, Alexandra • Ritter, Joachim • Tilmann, Frederik
Abstract: LITHOS-CAPP is the German contribution to the international ScanArray experiment. ScanArray is an array of broadband seismometers with which we aim to study the lithosphere and upper mantle beneath the Scandinavian Mountains and the Baltic Shield. LITHOS-CAPP contributed 20 broadband recording stations from September 2014 to October 2016, 10 in Sweden and 10 in Finland, continuously recordings at 100 samples per second. The stations were deployed by the KIT Geophysical Institute and GFZ section 2.4 (seismology). They form part of the temporary network ScanArrayCore (FDSN network code 1G 2012-2017). This data publication contains the original log-files of the recorders.
# 5
Overduin, Paul • Ryberg, Trond • Kneier, Fabian • Haberland, Christian • Grigoriev, Mikhail
Abstract: In August and September 2013, 17 shallow ocean bottom seismograph (S-OBS) stations and 8 land stations had been deployed on and around Muostakh Island (Laptev Sea, Russia) for a time period of 24 days. The specifically designed underwater recording equipment consists of a low-power digital recorder, a standard 4.5Hz 3-component geophone, and a battery pack. These components are enclosed in a watertight cylindrical container safe for operation down to 100m water depth. Land stations were also equipped with 4.5 Hz 1C-geophones as well as with batteries. All instruments recorded continuously with 200 samples per second (sps). The stations were deployed along two profiles covering a region of 8km x 8 km. The tilt of the geophone inside the S-OBS influences the sensor characteristics. Since the orientation and tilt at the ocean bottom was unknown, approximately every 24 hours a calibration signal (a sequence of step-functions) was applied to the sensors of the ocean stations. This might be used to recover the actual sensor characteristics (eigenfrequency and damping). The dataset contains 1) a info-folder with a) a README file; b) a file containing the times when calibration signals occurred (format: recorder_ID - date - time); c) the station table (ASCII; recorder_ID - latitude - longitude - (water)depth); d) a map of the region with the locations of the stations; 2) raw CUBE-formatted data; 3) converted mini-seed-formatted data (hourly files).
spinning wheel Loading next page