41 documents found in 429ms
# 1
Rosenau, Matthias • Horenko, Illia • Corbi, Fabio • Rudolf, Michael • Kornhuber, Ralf • (et. al.)
Abstract: This data set provides data from subduction zone earthquake experiments and analysis described in Rosenau et al. (2019). In the experiments analogue seismotectonic scale models of subduction zones characterized by two seismogenic asperities are used to study the interaction of asperities over multiple seismic cycles by means of static (Coulomb failure) stress transfer. Various asperity geometries (lateral/along-strike of the subduction zone distance and vertical/across-strike of the subduction zone offset) are tested on their effect on recurrence pattern of simulated great (M8+) earthquakes. The results demonstrate the role of stress coupling in the synchronization of asperities leading to multi-asperity M9+ events in nature. The data set contains time series of experimental surface velocities from which analogue earthquakes are detected and classified into synchronized events and solo events. The latter are subcategorized into main events and aftershocks and into normal and thrust events. An analogue earthquake catalogue lists all categorized events of the 12 experiments used for statistical analysis. Moreover, results from elastic dislocation modelling aimed ate quantifying the stress coupling between the asperities for the various geometries are summarized. Basic statistics of classified events (e.g. percentage of categorized events, coefficient of variation in size and recurrence time etc.) are documented. Matlab scripts are provided to visualize the data as in the paper.
# 2
Corbi, Fabio • Sandri, Laura • Bedford, Jonathan • Funiciello, Francesca • Brizzi, Silvia • (et. al.)
Abstract: This data set includes the results of digital image correlation of one experiment on subduction megathrust earthquakes with interacting asperities performed at the Laboratory of Experimental Tectonics (LET) Univ. Roma Tre in the framework of AspSync, the Marie Curie project (grant agreement 658034) lead by F. Corbi in 2016-2017. Detailed descriptions of the experiments and monitoring techniques can be found in Corbi et al. (2017 and 2019) to which this data set is supplementary material. We here provide Digital Image Correlation (DIC) data relative to a 7 min long interval during which the experiment 
produces 40 seismic cycles with average duration of about 10.5 s (see Figure S1 in Corbi et al., 2019). The DIC analysis yields quantitative about the velocity field characterizing two consecutive frames, measured in this case at the model surface. For a detailed description of the experimental procedure, set-up and materials used, please refer to the article of Corbi et al. (2017) paragraph 2. This data set has been used for: a) studying the correlation between apparent slip-deficit maps and earthquake slip pattern (see Corbi et al., 2019; paragraph 4); and b) as input for the Machine Learning investigation (see Corbi et al., 2019; paragraph 5). Further technical information about the methods, data products and matlab scripts is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 3
Gaudin, Damien • Cimarelli, Corrado
Abstract: Series of experiments to assess the role of pressure, mass of particles, and grain size distribution in the generation of charges and discharges during shock-tube experiments. Experiments have been achieved between 2017 and 2018 in the facilities of Department of Earth and Environmental Sciences - LMU München.This dataset contains:- an excel spreadsheet summarizing the 63 experiments in the database with their main characteristics- a pdf file for each experiment, with the waveforms of the main instruments used in the experiment (Pressure sensors and Faraday cage) as well as ellaborated data (total amount of charges and discharges, discharge size distribution.
Description of the raw file for each experiment (in CSV format). After the header, the columns display respectively: (1) the time [s](2) the static pressure within the autoclave [MPa](3) the voltage across the Faraday cage [V] on a low-sensitivity channel of the datalogger(4) the voltage across the Faraday cage [V] on a high-sensitivity channel of the datalogger that might saturate in some cases(5) the voltage across the lower antenna [V] as described in Cimarelli et al., 2014 (for some experiments only, otherwise the signal remains close to 0)(6) the voltage across the upper antenna [V] as described in Cimarelli et al., 2014 (for some experiments only, otherwise the signal remains close to 0)(7) the dynamic pressure at the exit of the nozzle [MPa](8) the trigger signal generated by the datalogger [V]
# 4
Albert, Francisca
Abstract: This data set includes movies and images of sandbox experiments aiming at understainding the process of subduction erosion at active plate margins (Albert, 2013). Four experiments are documented by means of movies showing the evolution of a strong wedge (sand-sugar mix, “Reference experiment.avi”), a weak wedge (sand only, “F1 experiment.avi”) and two successive phases of a wedge that undergoes subduction erosion by subducting topographic highs (first stage without subducting topography= “HL.1 experiment.avi” and second stage with subducting topography = “HL.2 experiment.avi”). Images of preliminary tests and experiments not considered in Albert (2013) are given in “Appendix A2.2.pdf” (small box experiments) and “Appendix A3.3.pdf” (experiments varying friction and slope).
# 5
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (“G12”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust. The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.69, µD = 0.55 and µR = 0.62, respectively. Cohesions C are in the order of 50 – 110 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 6
Corbi, Fabio • Xu, Wenbin • Rivalta, Eleonora • Jonsson, Sigurjon
Abstract: This dataset is supplementary material to the article by Xu et al. (2016) ‘Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments’. The Authors described the spatial and temporal effects of a propagating dike on crustal deformation, including the interaction with faulting, using a multidisciplinary approach. This supplementary material concerns the analog modelling part only. For a detailed description of the experimental procedure, set-up and materials used, please refer to the article of Xu et al. (2016; paragraph 5). The data available in this supplementary publication are: - A folder (2019-003_Corbi-et-al_Fig6.zip) containing: 1. top-view pictures (e.g. ‘lunayyr1_0025.JPG’) and displacement data obtained with MatPiv (e.g. ‘uun25.mat’ and ‘uvn25.mat’; dike parallel and orthogonal components; respectively) shown in figure 6 of Xu et al 2016. 2. a Matlab script (‘fig6_a_h.m’) that allows reproducing the same figure setup as in figure 6 panels a-h of Xu et al 2016. The thick red line highlights dike position. The background shading refers to dike orthogonal displacement. - A folder (2019-003_Corbi-et-al_PIV_data.zip) containing: 1. surface deformation data obtained with MatPiv. Each file (‘vel_fine_piv#.mat’) contains 4 elements (x, y, u, v) representing the coordinates and horizontal and vertical component of incremental velocity field organized in a 143 x 215 matrix; 2. the run_movie.m Matlab script. Running it the user can visualize the space-time evolution of cumulative surface displacement. The background shading refers to dike orthogonal component of displacement. The thick red line highlights dike position. - A folder (2019-003_Corbi-et-al_pictures.zip) containing the whole set of pictures from the experiment shown in Xu et al., 2016. - A movie (2019-003_Corbi-et-al_graben formation.mp4) obtained using the whole set of pictures (96 photos). The thick red line highlights dike position. The amount of dike opening is reported as header. - A movie (2019-003_Corbi-et-al_cum_displacement.mp4) showing the space-time evolution of cumulative surface displacement, where the background shading refers to dike orthogonal component of displacement. The thick red line highlights dike position.
# 7
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (type “G23”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust (e,g. Kenkmann et al., 2007; Contardo et al., 2011; Reiter et al., 2011;Warsitzka et al., 2013; Santimano,et al., 2015; Warsitzka et al., 2015; Ritter et al., 2016; 2018 a,b). The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.73, µD = 0.57 and µR = 0.65, respectively. Cohesions C are in the order of 10 – 120 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity v. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 8
Korte, Monika • Brown, Maxwell • Gunnarson, Sydney
Abstract: Global spherical harmonic paleomagnetic field model LSMOD.1 describes the magnetic field evolution from 50 to 30 ka BP based on published paleomagnetic sediment records and volcanic data. The time interval includes the Laschamp (~41 ka BP) and Mono Lake (~34 ka BP) excursions. The model is given with Fortran source code to obtain spherical harmonic magnetic field coefficients for individual epochs and to obtain time series of magnetic declination, inclination and field intensity from 49.95 to 30 ka BP for any location on Earth. For details see M. Brown, M. Korte, R. Holme, I. Wardinski and S. Gunnarson (2018): Earth's magnetic field is probably not reversing. PNAS, 115, 5111-5116.
File overviewLSMOD.1 -- ASCII file containing the time-dependent model by a list of spline basis knot points and spherical harmonic coefficients for these knot points.LSfield.f -- Fortran source code to obtain time series predictions of declination, inclination and intensity from the model file.LScoefs.f -- Fortran source code to obtain the spherical harmonic coefficients for an individual age from the time-dependent model file. The data are licenced under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0) and the Fortran Codes under the Apache License, Version 2.0. The Fortran source code should work with any standard Fortran 77 or higher compiler. Each of the two program files can be compiled separately, all required subroutines are included in the files. The model file, LSMOD.1 or LSMOD.2, is read in by the executable program and has to be in the same directory. The programs work with interactive input, which will be requested when running the program.
# 9
Reiter, Karsten • Kukowski, Nina • Ratschbacher, Lothar • Rosenau, Matthias
Abstract: This data publication includes animations and figures of eight scaled analogue models that are used to investigate the evolution of a curved mountain belt akin to the Pamir and Hindu Kush orogenic system and adjacent Tadjik basin. Crustal deformation is simulated by means of indentation of two basement blocks into a sedimentary sequence and the formation of a curved fold-and-thrust belt.The experimental set-up has two adjacent rigid indenters representing the basement blocks moving in parallel with a velocity difference (Figure 1). The slow indenter moves with a relative velocity ranging from 40 to 80% of that of the fast one. A layer of quartz sand in front of the indenters, 1 by 1 meter in size and 1.5 cm thick, represents the sedimentary basin infill. A basal detachment layer is made up of low-friction glass beads or viscous silicone oil representing weak shale or evaporates layers, respectively. The surface evolution by means of topography and strain distribution is derived from 3-D particle image velocimetry (PIV). This allows visualizing and analysing the development of the model surface during the complete model run at high spatio-temporal resolution. All details about the model set-up, modelling results and interpretation can be found in Reiter et al. (2011).The here provided additional material includes time-lapse movies showing the topographic evolution of the eight models. These visualizations are oblique views played back at 60-fold velocity for the “glass beads experiments” (gb40 to gb80) and 3600-fold velocity for the “silicone experiments” (si60, si-gb60).In addition to the experiment movies we provide a set of figures. The figures include surface views as well as cross-sections through the finite models highlighting the link between topography and internal structure of the simulated curved fold-and-thrust belts. Additionally, attribute maps of distinct morphometric measures (curvature, slope) and deformation parameters (uplift, horizontal translation) for the experiments with glass beads detachments are given. Finally, the movie “Experimenting.avi” shows in time-lapse the whole workflow of setting up, conducting and documenting an experiment, which originally required three days (for experiment si-gb60).An overview on the parameters used in the experimental series of the movie sequences is given in the explanatory file (Explanations_Reiter-et-al-2016.pdf). A full list of files is given in “list-of-files-Reiter-et-al-2016.pdf”.
# 10
Rudolf, Michael • Boutelier, David • Rosenau, Matthias • Schreurs, Guido • Oncken, Onno
Abstract: The datasets that are presented here have been obtained to provide a rheological benchmark of silicones used in various analog modeling laboratories. The data contains rheological measurements of several polydimethylsiloxanes (PDMS) and filled silicone oils. The samples of eight different silicone oils originate from seven laboratories. Each sample was analyzed using rotational controlled shear rate tests (CSR), temperature sweep test, and dynamical oscillation tests (amplitude and frequency sweeps). Detailed information on the analysis and interpretation of the data is found in Rudolf, et al. (2016).The data is provided as comma-separated files in *.csv format. Each file contains multiple measurements, each starting with own data series information that is followed by the actual measurement in the form of a table including the individual units of measure. Furthermore the results from ReSpect (Takeh & Shanbhag, 2013) for the discrete Maxwell relaxation spectra are provided. All files can be opened using a text-editor, MS Excel, or equivalent software.More information about the datasets is available in the file Explanations_Rudolf-et-al-2016.pdf, an overview on the available files in the List_of_Files_Rudolf-et-al-2016 (in .pdf and .xlsx format). All information and overview files are also included in Rudolf-et-al-2016_datasets.zip.
spinning wheel Loading next page