22 documents found in 377ms
# 1
Corbi, Fabio • Xu, Wenbin • Rivalta, Eleonora • Jonsson, Sigurjon
Abstract: This dataset is supplementary material to the article by Xu et al. (2016) ‘Graben formation and dike arrest during the 2009 Harrat Lunayyir dike intrusion in Saudi Arabia: Insights from InSAR, stress calculations and analog experiments’. The Authors described the spatial and temporal effects of a propagating dike on crustal deformation, including the interaction with faulting, using a multidisciplinary approach. This supplementary material concerns the analog modelling part only. For a detailed description of the experimental procedure, set-up and materials used, please refer to the article of Xu et al. (2016; paragraph 5). The data available in this supplementary publication are: - A folder (2019-003_Corbi-et-al_Fig6.zip) containing: 1. top-view pictures (e.g. ‘lunayyr1_0025.JPG’) and displacement data obtained with MatPiv (e.g. ‘uun25.mat’ and ‘uvn25.mat’; dike parallel and orthogonal components; respectively) shown in figure 6 of Xu et al 2016. 2. a Matlab script (‘fig6_a_h.m’) that allows reproducing the same figure setup as in figure 6 panels a-h of Xu et al 2016. The thick red line highlights dike position. The background shading refers to dike orthogonal displacement. - A folder (2019-003_Corbi-et-al_PIV_data.zip) containing: 1. surface deformation data obtained with MatPiv. Each file (‘vel_fine_piv#.mat’) contains 4 elements (x, y, u, v) representing the coordinates and horizontal and vertical component of incremental velocity field organized in a 143 x 215 matrix; 2. the run_movie.m Matlab script. Running it the user can visualize the space-time evolution of cumulative surface displacement. The background shading refers to dike orthogonal component of displacement. The thick red line highlights dike position. - A folder (2019-003_Corbi-et-al_pictures.zip) containing the whole set of pictures from the experiment shown in Xu et al., 2016. - A movie (2019-003_Corbi-et-al_graben formation.mp4) obtained using the whole set of pictures (96 photos). The thick red line highlights dike position. The amount of dike opening is reported as header. - A movie (2019-003_Corbi-et-al_cum_displacement.mp4) showing the space-time evolution of cumulative surface displacement, where the background shading refers to dike orthogonal component of displacement. The thick red line highlights dike position.
# 2
Willingshofer, Ernst • Sokoutis, Dimitrios • Beekman, Fred • Schönebeck, Jan-Michael • Warsitzka, Michael • (et. al.)
Abstract: This dataset provides friction data from ring-shear tests (RST) on feldspar sand and quartz sand, which are used to simulate brittle behaviour in crust- and lithosphere-scale analogue experiments at the Tectonic Laboratory (TecLab), Utrecht University (NL) (Willingshofer et al., 2005; Willingshofer & Sokoutis, 2009; Athmer et al., 2010; Luth et al., 2010; Fernández-Lozano et al., 2011; Leever et al., 2011; Sokoutis & Willingshofer, 2011; Fernández-Lozano et al., 2012; Luth et al., 2013; Munteanu et al., 2013; Willingshofer et al., 2013; Munteanu et al., 2014; Calignano et al., 2015a, b; Ortner et al., 2015; Gabrielsen et al., 2016; Calignano et al., 2017; van Gelder et al., 2017; Wang et al., 2017; Beniest et al., 2018 ). The materials have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis both materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the feldspar sand are µP = 0.68, µD = 0.55, and µR = 0.61, respectively. Friction coefficients of the quartz sand are µP = 0.63, µD = 0.48, and µR = 0.52, respectively. Cohesions of the feldspar sand and the quartz sand are in the order of few tens of Pa. A minor rate-weakening of 1% per ten-fold rate change is evident for the feldspar sand, whereas the quartz sand shows a significant rate weakening of ~5%. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 3
Broerse, Taco • Norder, Ben • Picken, Stephen • Govers, Rob • Willingshofer, Ernst • (et. al.)
Abstract: This dataset provides strain and strain rate data on mixtures of plasticine, silicone oils and iron powder that has been used in slab break-of analogue experiments in the Tectonic Laboratory (TecLab) at Utrecht University (NL) as an analogue for viscously deforming lithosphere. The materials have been analyzed in a creep and recovery test, applying a parallel plate setup using an AR-G2 rheometer (by TA Instruments). The materials can in general be described as viscoelastic materials with a power-law rheology (see previous work on plasticine-silicone polymer mixtures Weijermars [1986], Sokoutis [1987], Boutelier et al. [2008]). For a couple of the tested materials we find a complementary Newtonian behavior at the low end of the tested stress levels, with a transition to power-law behavior at increasing stress. Furthermore, the materials exhibit elastic and anelastic (recoverable) deformation. The corresponding paper (Broerse et al., 2018) describes the rheology, while this supplement describes the raw data and important details of the measurement setup. The raw data concerns mostly (uncorrected) strain and strain rate data. The rheometry has been performed at the Advanced Soft Matter group at the Department of Chemical Engineering, Delft University of Technology, The Netherlands.
# 4
McBeck, Jessica • Cooke, Michele • Souloumiac, Pauline • Maillot, Bertrand • Mary, Baptiste
Abstract: Tracking the evolution of the deformational energy budget within accretionary systems provides insight into the driving mechanisms that control fault development. To quantify the impact of these mechanisms on overall system efficiency, we estimate energy budget components as the first thrust fault pair develops in dry-sand accretion analogue experiments. This data set includes photos taken and forces measured in four experiments performed at Université de Cergy-Pontoise in October-November 2016. The experiments are described in McBeck et al. (submitted). The data are organized into 5 main folders, with the following contents:1) E373_photos: Contains 3 subfolders: droit_RDY, gauche_RDY, haut_RDY. Each subfolder contains images taken at 1 second intervals throughout experiment. droit_RDY, gauche_RDY, and haut_RDY contain photos of the right, left, and top of the sandpack.2) E374_photos: Same organization and contents of folder E373_photos3) E375_photos: Same organization and contents of folder E373_photos4) E376_photos: Same organization and contents of folder E373_photos5) forces: Contains text files that list the normal force against the backwall (N) and total applied normal displacement to the backwall (mm) in the second and first columns, respectively. The filename indicates which experiment the text file describes.
# 5
Siegert, Susann • Hecht, Lutz
Abstract: The Ries impact structure in Southern Germany is one of the best-preserved impact structures on Earth. Melt-bearing impact breccia appears in a variety of well accessible exposures around the inner ring up to 10 km beyond the crater rim (so-called outer suevite) overlying a ballistically ejected lithic breccia (so-called ‘Bunte Breccia’). Occasionally individual melt bombs occur in the ‘Bunte Breccia’. Coherent impact melt rock outside the inner crater is located in the eastern megablock zone (Stöffler et al., 2013 and references therein). This data set comprises major and trace element geochemistry of samples from eight outer suevite exposures, one impact melt rock exposure, and one melt bomb of the Ries impact crater. Two analytical method approaches were performed: i) in-situ analysis using electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and ii) analysis of whole-rock, melt separates, and suevite matrix separates using X-ray fluorescence (XRF), and inductively coupled plasma atomic emission spectroscopy (ICP-AES)/ inductively coupled plasma mass spectrometry (ICP-MS).
# 6
Zwaan, Frank • Schreurs, Guido • Gentzmann, Robert • Warsitzka, Michael • Rosenau, Matthias
Abstract: This dataset provides internal and basal (wall) friction data from ring-shear tests (RST) on a quartz sand material that has been used in tectonic experiments in Zwaan et al. (2016, 2017), Zwaan and Scheurs (2017) and in the Tectonic Modelling Lab of the University of Bern (CH) as an analogue for brittle layers in the crust or lithosphere. The material has been characterized by means of internal and basal friction coefficients μ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for the Tectonic Modelling Lab of the University of Bern (UB). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope. Internal peak, dynamic and reactivation friction coefficients are μP = 0.73, μD = 0.61, and μR = 0.66, respectively. Internal cohesions C are in the range of 10 to 70 Pa. Basal peak, dynamic and reactivation friction coefficients are μP = 0.41, μD = 0.35, and μR = 0.36, respectively, whereas basal cohesions C are in the range of 120 to 150 Pa. The rate dependency of the internal dynamic friction coefficient is insignificant (<1%).
# 7
Zwaan, Frank • Schreurs, Guido • Ritter, Malte • Santimano, Tasca • Rosenau, Matthias
Abstract: This dataset provides rheometric data of silicone (Polydimethylsiloxane, PDMS SGM36)-corundum sand mixtures used for analogue modelling in Zwaan et al. (2016, 2017), Zwaan and Schreurs (2017) and in the Tectonic Modelling Lab of the Institute of Geological Sciences at the University of Bern (CH). The PDMS is produced by Dow Corning and its characteristics have been described by e.g. Rudolf et al. (2016a,b). The corundum sand (Normalkorund Braun 95.5% F120 by Carlo Bernasconi AG: https://www.carloag.ch/shop/catalog/product/view/id/643), has a grainsize of 0.088-0.125 mm and a specific density of 3.96 g cm^-3. Further rheological characteristics are described by Panien et al. (2006). The density of the tested materials ranges between 1 (pure PDMS) and 1.6 g cm^-3 (increasing corundum sand content in mixture). The material samples have been analysed in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at GFZ German Research Centre for Geosciences in Potsdam using an Anton Paar Physica MCR 301 rheometer in a plate-plate configuration at room temperature. Rotational (controlled shear rate) tests with shear rates varying from 10^-4 to 10^-1 s^-1 were performed. According to our rheometric analysis, the material is quasi Newtonian at strain rates below 10^-3*s^-1 and weakly shear rate thinning above. Viscosity and stress exponent increase systematically with density from ~4*10^4 to ~1*10^5 Pa*s and from 1.06 to 1.10, respectively. A first application of the materials tested can be found in Zwaan et al. (2016). Detailed information about the data, methodology and a list of files and formats is given in the "data description" and "list of files" that are included in the zip folder and also available via the DOI landing page.
# 8
Corti, Giacomo • Sordi, Riccardo • Cucci, Federica
Abstract: We present the results of centrifuge experiments investigating the role of preexisting crustal discontinuity on continental rifting. Specifically, we reproduce inherited weaknesses, orthogonal to the rift trend and parallel to the extension direction, and analyze their influence on the evolution and architecture of extensional deformation in the inner part and at the margins of continental rift valleys. Four different models, with variable width of the pre-existing weakness are illustrated. The models show a significant influence exerted by the pre-existing anisotropy on rifting: specifically, the inherited weakness inhibits the development of large boundary faults at rift margins, which are instead replaced by gentle monoclines dipping toward the rift axis. Axial faults are “captured” by the inherited anisotropy and rotate towards the pre-existing weakness, which therefore produces an unusual structural pattern also in the axial zone. This influence is dependent on the initial width of the pre-rift anisotropy and becomes negligible when its scaled width is 20 km or less.
# 9
Willingshofer, Ernst • Sokoutis, Dimitrios • Kleinhans, Maarten • Beekmann, Fred • Schönebeck, Jan-Michael • (et. al.)
Abstract: This dataset provides friction data from ring-shear test (RST) on a plastic (polyester) sand material that has been used in flume experiments (Marra et al., 2014; Kleinhans et al., 2017) and is now used in the Tectonic Laboratory (TecLab) at Utrecht University (NL) as an analogue for brittle layers in the crust or lithosphere. Detailed information about the data, methodology and a list of files and formats is given in the data description and list of files that are included in the zip folder and also available via the DOI landing page. The material has been characterized by means of internal friction coefficient and cohesion as a remote service by GFZ Potsdam for TecLab (Utrecht University). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of 0.76, 0.60, and 0.66, respectively. Cohesions are in the order of few tens of Pa. A minor rate-weakening of 3% per ten-fold rate change is evident.
# 10
Urbani, Stefano • Acocella, Valerio • Rivalta, Eleonora
Abstract: The dataset includes movies of 29 analogue experiments performed to investigate the effects on dike propagation by the following imposed parameters: density ratio between host-rock and magma analogues, rigidity layering and density layering of the host medium, flow rate and topography. The purpose of the experiments is to define a hierarchy of all the parameters considered, by varying systematically each of them, comparing semi-quantitatively the variations on dike geometry and velocity. Experimental setup The experimental set-up consists of a 33 × 58 × 38.5 cm3 Plexiglas box and a peristaltic pump that injects water (magma analogue) into pig-skin gelatin (crustal analogue) alternatively from the bottom (Set 1) and the side of the box (Set 2). The gelatin rheological properties are varied by mixing different concentrations of gelatin powder and NaCl. We refer to “rigidity layering” when the rigidity ratio (i.e. Young’s Modulus) between the upper and lower layer (Eu/El) is < or > 1, and to “density layering” when Eu/El ~ 1, but the two layers show different densities (i.e. the ratio between the density of the upper and lower layer, ρU/ρL). The experiments with topography are prepared by imposing a mold with gently inward dipping flanks (2.4° and 3.7°) on the opposite sides of the box separated by a 8 cm wide horizontal plain on the gelatin surface. This configuration simulates the 2-D along-strike topography of the 2014 Bardarbunga intrusion (Iceland) and allows investigating the role of two opposite slopes on dike propagation. The topography profile dips parallel to the long side of the Plexiglas box (x axis in Figure 1 of Urbani et al. 2018). The flow rate has been changed between 0.079 and 0.435 ml/s. For the details about the model set-up, experimental results and interpretation refer to Urbani et al. (2018). The time-lapse movies show the time evolution of the dike shape, in side and map view, of 29 out of 33 models presented in Urbani et al. (2018). It is recommended to open the films with the VLC media player. The time-lapse of each experiment is indicated in the bottom left corner. A full list of files is given in “Experiments_Summary_2018-012.pdf” in which Set 1 (bottom injection) and Set 2 (lateral injection) experiments are indicated in red and blue color respectively. The same file also provides a summary of the boundary conditions imposed in each experiment. Tu and Tl indicate the thickness of the upper and lower layer respectively.
spinning wheel Loading next page