64 documents found in 357ms
# 1
Bindi, Dino • Zaccarelli, Riccardo • Strollo, Angelo • Di Giacomo, Domenico
Abstract: In Bindi et al. (2019) a harmonized local magnitude scale across Europe has been derived using data disseminated by network operators through the European Integrated Data Archive (EIDA). This data set contains regionalized non-parametric attenuation tables, attenuation corrections to the parametric model and station corrections for both non-parametric and parametric models for more than 2000 stations in Europe. Regionalization has been performed considering six different regions covering Europe and the polygons defining them are also provided. Data are subject to updates that can be triggered by the availability of new and substantial input data (reviewed earthquake catalogues and/or new waveforms). Each update will be released with a new version of the data. The data are provided in ASCII format (.csv).
# 2
Zaccarelli, Riccardo
Abstract: The task of downloading comprehensive datasets of event-based seismic waveforms has been made easier through the development of standardised web services, but is still highly non-trivial, as the likelihood of temporary network failures or even worse subtle data errors naturally increase when the amount of requested data is in the order of millions of relatively short segments. This is even more challenging as the typical workflow is not restricted to a single massive download but consists of fetching all possible available input data (e.g., with several repeated download executions) for a processing stage producing any desired user-defined output. Here, we present stream2segment, a highly customisable Python 2+3 package helping the user through the whole workflow of downloading, inspecting and processing event-based seismic data by means of a relational database management system as archiving storage, which has clear performance and usability advantages. Stream2segment provides an integrated processing implementation able to produce any kind of user-defined output based on a configuration file and a user-defined Python function. Stream2segment can also produce diagnostic maps or user-defined plots which, unlike existing tools, do not require external software dependencies and are not static images but interactive browser-based applications ideally suited for data inspection or annotation tasks.
# 3
Pijnenburg, Ronald • Verberne, Berend • Hangx, Suzanne • Spiers, Christopher
Abstract: Pore pressure reduction in sandstone reservoirs generally leads to small elastic plus inelastic strains. These small strains (0.1 – 1.0% in total) may lead to surface subsidence and induced seismicity. In current geomechanical models, the inelastic component is usually neglected, though its contribution to stress-strain behaviour is poorly constrained. To help bridge this gap, we performed deviatoric and hydrostatic stress-cycling experiments on Slochteren sandstone samples from the seismogenic Groningen gas field in the Netherlands. We explored in-situ conditions of temperature (T = 100°C) and pore fluid chemistry, porosities of 13 to 26% and effective confining pressures (≤ 320 MPa) and differential stresses (≤ 135 MPa) covering and exceeding those relevant to producing fields. The findings of our work are outlined in the corresponding paper. The data presented here are the measured mechanical tabular data and microstructural data (stitched mosaic of backscatter electron images) provided as uncompressed jpg images. In addition, for one sample we include chemical element maps obtained through Electron Dispersive X-ray spectrometry (EDX).
# 4
Kwiatek, Grzegorz • Saarno, Tero • Ader, Thomas • Bluemle, Felix • Bohnhoff, Marco • (et. al.)
Abstract: The dataset is supplementary material to Kwiatek et al. (2019, Science Advances). The dataset is a refined seismic catalog acquired during the hydraulic stimulation of the future geothermal sites located in Espoo, Finland. There, the injection well, OTN-3, was drilled down to 6.1 km-depth into Precambrian crystalline rocks. Well OTN-3 was deviated 45° from vertical and an open hole section at the bottom was divided into several injection intervals. A total of 18,159 m3 of fresh water was pumped into crystal-line rocks during 49 days in June- and July, 2018. The stimulation was monitored in near-real time using (1) a 12-level seismometer array at 2.20-2.65 km depth in an observation well located ~10 m from OTN3 and (2) a 12-station network installed in 0.3-1.15 km deep bore-holes surrounding the project site. On completion of stimulation it the catalog contained 8452 event detections overall, and 6152 confirmed earthquakes located in the vicinity of the project site (epicentral distance from the well head of OTN-3 <5 km). These were recorded in a time period lasting 59 days: 49 days of active stimulation campaign and the 10 days following completion. The initial industrial seismic catalog of 6150 earthquakes was manually reprocessed. The P- and S-wave arrivals of larger seismic events with M>0.5 were all manually verified, and, if necessary, refined. Earthquakes with sufficient number of phases and seemingly anomalous hypocenter depths (e.g. very shallow or very deep) were manually revised as well. The hypocenter locations were calculated using the Equivalent differential time method and optimized with an Adaptive Simulated Annealing algorithm. The updated catalog contained 4,580 earthquakes that occurred at hypocenter depths 4.5-7.0 km, in the vicinity of the stimulation section of OTN-3. To increase the precision of their locations, the selected 2155 earthquakes with at least 10 P-wave and 4 S-wave picks were relocated using the double-difference relocation technique. The relocation uncertainties were estimated using bootstrap resampling technique. The relocation reduced the relative precision of hypocenter determination to approx. 66 m and 27 m for 95% and 68% of relocated earthquakes. The final relocated catalog that constitutes the here published contained 1,977 earthquakes (91% of the originally selected events).
# 5
Ziegler, Moritz • Heidbach, Oliver
Abstract: The distribution of data records for the maximum horizontal stress orientation S_Hmax in the Earth’s crust is sparse and very unequally. To analyse the stress pattern and its wavelength and to predict the mean S_Hmax orientation on regular grids, statistical interpolation as conducted e.g. by Coblentz and Richardson (1995), Müller et al. (2003), Heidbach and Höhne (2008), Heidbach et al. (2010) or Reiter et al. (2014) is necessary. Based on their work we wrote the Matlab® script Stress2Grid that provides several features to analyse the mean S_Hmax pattern. The script facilitates and speeds up this analysis and extends the functionality compared to the publications mentioned before. This script is the update of Stress2Grid v1.0 (Ziegler and Heidbach, 2017). It provides two different concepts to calculate the mean S_Hmax orientation on regular grids. The first is using a fixed search radius around the grid points and computes the mean S_Hmax orientation if sufficient data records are within the search radius. The larger the search radius the larger is the filtered wavelength of the stress pattern. The second approach is using variable search radii and determines the search radius for which the standard deviation of the mean S_Hmax orientation is below a given threshold. This approach delivers mean S_Hmax orientations with a user-defined degree of reliability. It resolves local stress perturbations and is not available in areas with conflicting information that result in a large standard deviation. Furthermore, the script can also estimate the deviation between plate motion direction and the mean S_Hmax orientation. The script is fully documented by the accompanying WSM Technical Report 19/02 (Ziegler and Heidbach, 2019) which includes a changelog in the beginning.
# 6
Ziegler, Moritz • Heidbach, Oliver
Abstract: The distribution of data records for the maximum horizontal stress orientation SHmax in the Earth’s crust is sparse and very unequally. In order to analyse the stress pattern and its wavelength or to predict the mean SHmax orientation on a regular grid, statistical interpolation as conducted e.g. by Coblentz and Richardson (1995), Müller et al. (2003), Heidbach and Höhne (2008), Heidbach et al. (2010) or Reiter et al. (2014) is necessary. Based on their work we wrote the Matlab® script Stress2Grid that provides several features to analyse the mean SHmax pattern. The script facilitates and speeds up this analysis and extends the functionality compared to aforementioned publications. The script is complemented by a number of example and input files as described in the WSM Technical Report (Ziegler and Heidbach, 2017, http://doi.org/10.2312/wsm.2017.002). The script provides two different concepts to calculate the mean SHmax orientation on a regular grid. The first is using a fixed search radius around the grid point and computes the mean SHmax orientation if sufficient data records are within the search radius. The larger the search radius the larger is the filtered wavelength of the stress pattern. The second approach is using variable search radii and determines the search radius for which the variance of the mean SHmax orientation is below a given threshold. This approach delivers mean SHmax orientations with a user-defined degree of reliability. It resolves local stress perturbations and is not available in areas with conflicting information that result in a large variance. Furthermore, the script can also estimate the deviation between plate motion direction and the mean SHmax orientation.
# 7
Dreiling, Jennifer • Tilmann, Frederik
Abstract: BayHunter is an open source Python tool to perform an McMC transdimensional Bayesian inversion of receiver functions and/ or surface wave dispersion. It is inverting for the velocity-depth structure, the number of layers and noise parameters (noise correlation and amplitude). The forward modeling codes are provided within the package, but are easily replaceable with own codes. It is also possible to add (completely different) data sets. The BayWatch module can be used to live-stream the inversion while it is running: this makes it easy to see how each chain is exploring the parameter space, how the data fits and models change and in which direction the inversion progresses.
# 8
Broerse, Taco • Norder, Ben • Picken, Stephen • Govers, Rob • Willingshofer, Ernst • (et. al.)
Abstract: This dataset provides strain and strain rate data on mixtures of plasticine, silicone oils and iron powder that has been used in slab break-of analogue experiments in the Tectonic Laboratory (TecLab) at Utrecht University (NL) as an analogue for viscously deforming lithosphere. The materials have been analyzed in a creep and recovery test, applying a parallel plate setup using an AR-G2 rheometer (by TA Instruments). The materials can in general be described as viscoelastic materials with a power-law rheology (see previous work on plasticine-silicone polymer mixtures Weijermars [1986], Sokoutis [1987], Boutelier et al. [2008]). For a couple of the tested materials we find a complementary Newtonian behavior at the low end of the tested stress levels, with a transition to power-law behavior at increasing stress. Furthermore, the materials exhibit elastic and anelastic (recoverable) deformation. The corresponding paper (Broerse et al., 2018) describes the rheology, while this supplement describes the raw data and important details of the measurement setup. The raw data concerns mostly (uncorrected) strain and strain rate data. The rheometry has been performed at the Advanced Soft Matter group at the Department of Chemical Engineering, Delft University of Technology, The Netherlands.
# 9
van Rijsingen, Elenora • Funiciello, Francesca • Corbi, Fabio • Lallemand, Serge
Abstract: This dataset contains digital image correlation (DIC) data of eight seismotectonic analogue experiments that were performed at the Laboratory of Experimental Tectonics (LET), Univ. Rome Tre, to investigate the effect of subduction interface roughness on the seismogenic behaviour of the megathrust. The study has been done in the framework of the Marie Sklodowska-Curie grant agreement 642029 – ITN CREEP. Together with DIC data we also provide analogue earthquake characteristics and Matlab scripts for visualization. Here we provide Digital Image Correlation data for eight experiments that last about 20 minutes (i.e., including tens of seismic cycles), of which four experiments include a smooth subduction interface and four a rough subduction interface. The DIC analysis provides a velocity field between two consecutive frames, measured at the surface of the model. Details about the nature and geometry of this interface, as well as the experimental procedure, model set-up and materials can be found in van Rijsingen et al. (2019), paragraph 2 and supporting information. A more detailed description of the data that we provide, the methods and the matlab scripts used for visualisation can be found in the data description file. An overview of the dataset can be found in the list of files.
# 10
Pijnenburg, Ronald • Verberne, Berend • Hangx, Suzanne • Spiers, Christopher
Abstract: Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 – σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 – 25%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The obtained data include:1) Mechanical data obtained in conventional triaxial compression experiments performed on reservoir sandstone. In these experiments, we imposed multiple stages of active loading, each followed by 24 hours of stress relaxation.2) Microstructural data obtained on undeformed and deformed samples.
spinning wheel Loading next page