44 documents found in 354ms

Supporting Information to: Resolving geophysical signals by terrestrial gravimetry: a time domain assessment of the correction-induced uncertainty
ISO19139(INSPIRE)
DIF
DataCite
Dataset

Mikolaj, Michal
• Reich, Marvin
• Güntner , Andreas

__Abstract:__This publication contains the supplementary data set to Mikolaj et al. "Resolving geophysical signals by terrestrial gravimetry: a time domain assessment of the correction-induced uncertainty" (2019, JGR-Solid Earth). The aim of the article is to estimate the uncertainty of terrestrial gravity corrections applied to resolve small-scale gravity effects. The uncertainty of the gravity corrections is assessed using various models of the tidal effect, large-scale hydrology, non-tidal ocean loading, and atmosphere. Taken into account are widely recognized models with global spatial coverage, sufficient temporal resolution and coverage, and available to the public for research purposes. The uncertainty is expressed in terms of a root-mean-square and mean-absolute error of the deviations between all available models. The data set comprises models for 11 sites worldwide. The processing scripts are provided along with an explanatory file with all instructions for results reproduction and application of the uncertainty analysis for an arbitrary location. Please consult the readme file for further details on the data.

Using real polar terrestrial gravimetry data to overcome the polar gap problem of GOCE - the gravity field model IGGT_R1C
ISO19139(INSPIRE)
DIF
DataCite
Model

Lu, Biao
• Förste, Christoph
• Barthelmes, Franz
• Petrovic, Svetozar
• Flechtner, Frank
• (et. al.)

__Abstract:__With the successful completion of ESA's PolarGAP campaign, terrestrial gravimetry data (gravity anomalies) are now available for both polar regions. Therefore, it is now possible to overcome the GOCE polar gap by using real gravimetry data instead of some regularization methods. But terrestrial gravimetry data needs to become filtered to remove the high-frequency gravity information beyond spher. harm. degree e.g. 240 to avoid disturbing spectral leakage in the satellite-only gravity field models. For the gravity anomalies from the Arctic, we use existing global gravity field models (e.g., EGM2008) for this filtering. But for the gravity anomalies from Antarctica, we use local gravity field models based on a point mass modeling method to remove the high-frequency gravity information. After that, the boundary-value condition from Molodensky's theory is used to build the observation equations for the gravity anomalies. Finally, variance component estimation is applied to combine the normal equations from the gravity anomalies, from the GOCE GGs (e.g., IGGT_R1), from GRACE (e.g., ITSG-Grace2014s) and for Kaula's rule of thumb (higher degree/order parts) to build a global gravity field model IGGT_R1C without disturbing impact of the GOCE polar gap. This new model has been developed by German Research Centre for Geosciences (GFZ), Technical University of Berlin (TUB), Wuhan University (WHU) and Huazhong University of Science and Technology (HUST). Parametersstatic model modelname IGGT_R1Cproduct_type gravity_fieldearth_gravity_constant 0.3986004415E+15radius 0.6378136460E+07max_degree 240norm fully_normalizedtide_system tide_freeerrors formal

GFZ VER13 SLCCI precise orbits of altimetry satellites ERS-1, ERS-2, Envisat, TOPEX/Poseidon, Jason-1, and Jason-2 in the ITRF2014 reference frame
ISO19139(INSPIRE)
DIF
DataCite
Dataset

Rudenko, Sergei
• Schöne, Tilo
• Esselborn, Saskia
• Neumayer, Karl Hans

__Abstract:__The data set provides GFZ VER13 orbits of altimetry satellites: ERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),TOPEX/Poseidon (September 23, 1992 - October 8, 2005),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015) derived at the time spans given at the GFZ German Research Centre for Geosciences (Potsdam, Germany) within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software (Zhu et al., 2004) and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the ITRF2014 terrestrial reference frame for all satellites using common, most precise models and standards available and described below. The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1, and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. For Envisat, altimeter crossover data were used additionally at 44 of 764 orbital arcs with gaps in SLR and DORIS data. The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c). Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM for month and DD for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2018) to which these orbits are supplementary material.

GFZ VER11 SLCCI precise orbits of altimetry satellites ERS-1, ERS-2, Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 in the ITRF2008
[version VER11]
ISO19139(INSPIRE)
DIF
DataCite
Dataset

Rudenko, Sergei
• Schöne, Tilo
• Neumayer, Karl-Hans
• Esselborn, Saskia
• Raimondo, Jean-Claude
• (et. al.)

__Abstract:__The data set provides GFZ VER11 orbits of altimetry satellites ERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005), derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below. The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2017)

The gravity field model based on the second invariant of the GOCE gravitational gradient tensor: IGGT_R1
ISO19139(INSPIRE)
DIF
DataCite
Model

Lu, Biao
• Luo, Zhicai
• Zhong, Bo
• Zhou, Hao
• Förste, Christoph
• (et. al.)

__Abstract:__IGGT_R1 is a static gravity field model based on the second invariant of the GOCE gravitational gradient tensor, up to degree and order 240. Based on tensor theory, three invariants of the gravitational gradient tensor (IGGT) are independent of the gradiometer reference frame (GRF). Compared to traditional methods for calculation of gravity field models based on GOCE data, which are affected by errors in the attitude indicator, using IGGT and least squares method avoids the problem of inaccurate rotation matrices. IGGT_R1 is the first experiment to use this method to build a real gravity field model by using GOCE gravitational gradients. This new model has been developed by Wuhan University (WHU), GFZ German Research Centre for Geosciences (GFZ), Technical University of Berlin (TUB), Huazhong University of Science and Technology (HUST) and Zhengzhou Information Engineering University (IEU). More details about the gravity field model IGGT_R1 is given in our paper “The gravity field model IGGT_R1 based on the second invariant of the GOCE gravitational gradient tensor” (Lu et al., 2017, http://doi.org/10.1007/s00190-017-1089-8). This work is supported by the Chinese Scholarship Council (No. 201506270158), the Natural Science Foundation of China (Nos. 41104014, 41131067, 41374023, 41474019 and 41504013) and the Key Laboratory of Geospace Environment and Geodesy, Ministry Education, Wuhan University (No. 16-02-07).

EIGEN-6S4 A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse
[version 2.0]
ISO19139(INSPIRE)
DIF
DataCite
Dataset

Förste, Christoph
• Bruinsma, Sean
• Abrikosov, Oleh
• Rudenko, Sergiy
• Lemoine, Jean-Michel
• (et. al.)

__Abstract:__EIGEN-6S4 (Version 2) is a satellite-only global gravity field model from the combination of LAGEOS, GRACE and GOCE data. All spherical harmonic coefficients up to degree/order 80 are time variable. Their time variable parameters consist of drifts as well as annual and semi-annual variations per year. The time series of the time variable spherical harmonic coefficients are based on the LAGEOS-1/2 solution (1985 to 2003) and the GRACE-LAGEOS monthly gravity fields RL03-v2 (August 2002 to July 2014) from GRGS/Toulouse (Bruinsma et al. 2009). The herein included GRACE/LAGEOS data were combined with all GOCE data which have been processed via the direct numerical approach (Pail et al. 2011). The polar gap instabilty has been overcome using the Sperical Cap Regularization (Metzler and Pail 2005). That means this model is a combination of LAGEOS/GACE with GO_CONS_GCF_2_DIR_R5 (Bruinsma et al. 2013). Version History: This data set is an updated version of Foerste et al. (2016, http://doi.org/10.5880/icgem.2016.004) Compared to the first version, EIGEN-6S4v2 contains an improved modelling of the time variable part, in particular for C20.

Dobslaw, Henryk
• Dill, Robert
• Dahle, Christoph

__Abstract:__Spherical harmonic coefficients that represent anomalous contributions of the non-tidal dynamic ocean to ocean bottom pressure during the specified timespan. The anomalous signals are relative to the mean field from 2003-2014.

Dobslaw, Henryk
• Dill, Robert
• Dahle, Christoph

__Abstract:__Spherical harmonic coefficients that represent the sum of the ATM (or GAA) and OCN (or GAB) coefficients during the specified timespan. These coefficients represent anomalous contributions of the non-tidal dynamic ocean to ocean bottom pressure, the non-tidal atmospheric surface pressure over the continents, the static contribution of atmospheric pressure to ocean bottom pressure, and the upper-air density anomalies above both the continents and the oceans. The anomalous signals are relative to the mean field from 2003-2014.

Dobslaw, Henryk
• Dill, Robert
• Dahle, Christoph

__Abstract:__Spherical harmonic coefficients that are zero over the continents, and provide the anomalous simulated ocean bottom pressure that includes non-tidal air and water contributions elsewhere during the specified timespan. These coefficients differ from GLO (or GAC) coefficients over the ocean domain by disregarding upper air density anomalies. The anomalous signals are relative to the mean field from 2003-2014.

Dobslaw, Henryk
• Dill, Robert
• Dahle, Christoph

__Abstract:__Spherical harmonic coefficients that represent anomalous contributions of the non-tidal atmosphere to the Earth's mean gravity field during the specified timespan. This includes the contribution of atmospheric surface pressure over the continents, the static contribution of atmospheric pressure to ocean bottom pressure elsewhere, and the contribution of upper-air density anomalies above both the continents and the oceans. The anomalous signals are relative to the mean field from 2003-2014.

Loading next page