11 documents found in 422ms
# 1
Dreiling, Jennifer • Tilmann, Frederik
Abstract: BayHunter is an open source Python tool to perform an McMC transdimensional Bayesian inversion of receiver functions and/ or surface wave dispersion. It is inverting for the velocity-depth structure, the number of layers and noise parameters (noise correlation and amplitude). The forward modeling codes are provided within the package, but are easily replaceable with own codes. It is also possible to add (completely different) data sets. The BayWatch module can be used to live-stream the inversion while it is running: this makes it easy to see how each chain is exploring the parameter space, how the data fits and models change and in which direction the inversion progresses.
# 2
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (“G12”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust. The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.69, µD = 0.55 and µR = 0.62, respectively. Cohesions C are in the order of 50 – 110 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 3
Rosenau, Matthias • Pohlenz, Andre • Kemnitz, Helga • Warsitzka, Michael
Abstract: This dataset provides friction data from ring-shear tests (RST) for a quartz sand (type “G23”). This material is used in various types of analogue experiments in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for simulating brittle rocks in the upper crust (e,g. Kenkmann et al., 2007; Contardo et al., 2011; Reiter et al., 2011;Warsitzka et al., 2013; Santimano,et al., 2015; Warsitzka et al., 2015; Ritter et al., 2016; 2018 a,b). The material has been characterized by means of internal friction coefficients µ and cohesions C. According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of µP = 0.73, µD = 0.57 and µR = 0.65, respectively. Cohesions C are in the order of 10 – 120 Pa. The material shows a minor rate-weakening of <1% per ten-fold change in shear velocity v. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 4
Willingshofer, Ernst • Sokoutis, Dimitrios • Beekman, Fred • Schönebeck, Jan-Michael • Warsitzka, Michael • (et. al.)
Abstract: This dataset provides friction data from ring-shear tests (RST) on feldspar sand and quartz sand, which are used to simulate brittle behaviour in crust- and lithosphere-scale analogue experiments at the Tectonic Laboratory (TecLab), Utrecht University (NL) (Willingshofer et al., 2005; Willingshofer & Sokoutis, 2009; Athmer et al., 2010; Luth et al., 2010; Fernández-Lozano et al., 2011; Leever et al., 2011; Sokoutis & Willingshofer, 2011; Fernández-Lozano et al., 2012; Luth et al., 2013; Munteanu et al., 2013; Willingshofer et al., 2013; Munteanu et al., 2014; Calignano et al., 2015a, b; Ortner et al., 2015; Gabrielsen et al., 2016; Calignano et al., 2017; van Gelder et al., 2017; Wang et al., 2017; Beniest et al., 2018 ). The materials have been characterized by means of internal friction coefficients µ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam. According to our analysis both materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of the feldspar sand are µP = 0.68, µD = 0.55, and µR = 0.61, respectively. Friction coefficients of the quartz sand are µP = 0.63, µD = 0.48, and µR = 0.52, respectively. Cohesions of the feldspar sand and the quartz sand are in the order of few tens of Pa. A minor rate-weakening of 1% per ten-fold rate change is evident for the feldspar sand, whereas the quartz sand shows a significant rate weakening of ~5%. Further information about materical characteristics, measurement procedures, sample preparation, the RST (Ring-shear test) and VST (Velocity stepping test) procedure, as well as the analysed method is proviced in the data description file. The list of files explains the file and folder structure of the data set.
# 5
Zwaan, Frank • Schreurs, Guido • Gentzmann, Robert • Warsitzka, Michael • Rosenau, Matthias
Abstract: This dataset provides internal and basal (wall) friction data from ring-shear tests (RST) on a quartz sand material that has been used in tectonic experiments in Zwaan et al. (2016, 2017), Zwaan and Scheurs (2017) and in the Tectonic Modelling Lab of the University of Bern (CH) as an analogue for brittle layers in the crust or lithosphere. The material has been characterized by means of internal and basal friction coefficients μ and cohesions C as a remote service by the Helmholtz Laboratory for Tectonic Modelling (HelTec) at the GFZ German Research Centre for Geosciences in Potsdam for the Tectonic Modelling Lab of the University of Bern (UB). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope. Internal peak, dynamic and reactivation friction coefficients are μP = 0.73, μD = 0.61, and μR = 0.66, respectively. Internal cohesions C are in the range of 10 to 70 Pa. Basal peak, dynamic and reactivation friction coefficients are μP = 0.41, μD = 0.35, and μR = 0.36, respectively, whereas basal cohesions C are in the range of 120 to 150 Pa. The rate dependency of the internal dynamic friction coefficient is insignificant (<1%).
# 6
Zwaan, Frank • Schreurs, Guido • Ritter, Malte • Santimano, Tasca • Rosenau, Matthias
Abstract: This dataset provides rheometric data of silicone (Polydimethylsiloxane, PDMS SGM36)-corundum sand mixtures used for analogue modelling in Zwaan et al. (2016, 2017), Zwaan and Schreurs (2017) and in the Tectonic Modelling Lab of the Institute of Geological Sciences at the University of Bern (CH). The PDMS is produced by Dow Corning and its characteristics have been described by e.g. Rudolf et al. (2016a,b). The corundum sand (Normalkorund Braun 95.5% F120 by Carlo Bernasconi AG: https://www.carloag.ch/shop/catalog/product/view/id/643), has a grainsize of 0.088-0.125 mm and a specific density of 3.96 g cm^-3. Further rheological characteristics are described by Panien et al. (2006). The density of the tested materials ranges between 1 (pure PDMS) and 1.6 g cm^-3 (increasing corundum sand content in mixture). The material samples have been analysed in the Helmholtz Laboratory for Tectonic Modelling (HelTec) at GFZ German Research Centre for Geosciences in Potsdam using an Anton Paar Physica MCR 301 rheometer in a plate-plate configuration at room temperature. Rotational (controlled shear rate) tests with shear rates varying from 10^-4 to 10^-1 s^-1 were performed. According to our rheometric analysis, the material is quasi Newtonian at strain rates below 10^-3*s^-1 and weakly shear rate thinning above. Viscosity and stress exponent increase systematically with density from ~4*10^4 to ~1*10^5 Pa*s and from 1.06 to 1.10, respectively. A first application of the materials tested can be found in Zwaan et al. (2016). Detailed information about the data, methodology and a list of files and formats is given in the "data description" and "list of files" that are included in the zip folder and also available via the DOI landing page.
# 7
Blanchet, Cécile L.
Abstract: The database presented here contains radiogenic neodymium and strontium isotope ratios measured on both terrestrial and marine sediments. It was compiled to help assessing sediment provenance and transport processes for various time intervals. This can be achieved by either mapping sediment isotopic signature and/or fingerprinting source areas using statistical tools (see supplemental references). The database has been built by incorporating data from the literature and the SedDB database and harmonizing the metadata, especially units and geographical coordinates. The original data were processed in three steps. Firstly, a specific attention has been devoted to provide geographical coordinates to each sample in order to be able to map the data. When available, the original geographical coordinates from the reference (generally DMS coordinates, with different precision standard) were transferred into the decimal degrees system. When coordinates were not provided, an approximate location was derived from available information in the original publication. Secondly, all samples were assigned a set of standardized criteria that help splitting the dataset in specific categories. We defined categories associated with the sample location ("Region", "Sub-region", "Location", which relate to location at continental to city/river scale) or with the sample types (terrestrial samples – “aerosols”, “soil sediments”, “river sediments” - or marine samples –“marine sediment” or “trap sample”). Thirdly, samples were discriminated according to their deposition age, which allowed to compute average values for specific time intervals (see attached table "Age_determination_Sediment_Cores.csv"). The dataset will be updated bi-annually and might be extended to reach a global geographical extent and/or add other type of samples. This dataset contains two csv tables: "Dataset_Nd_Sr_isotopes.csv" and "Age_determination_Sediment_Cores.csv". "Dataset_Nd_Sr_isotopes.csv" contains the assembled dataset of marine and terrestrial Nd and/or Sr concentration and isotopes, together with sorting criteria and geographical locations. "Age_determination_Sediment_Cores.csv" contains all background information concerning the determination of the isotopic signature of specific time intervals (depth interval, number of samples, mean and standard deviation). Column headers are explained in respective metadata comma-separated files. A human readable data description is provided in portable document format, as well. Finally, R code for mapping the data and running statistical analyses is also available for this dataset (see supplemental references).
# 8
Willingshofer, Ernst • Sokoutis, Dimitrios • Kleinhans, Maarten • Beekmann, Fred • Schönebeck, Jan-Michael • (et. al.)
Abstract: This dataset provides friction data from ring-shear test (RST) on a plastic (polyester) sand material that has been used in flume experiments (Marra et al., 2014; Kleinhans et al., 2017) and is now used in the Tectonic Laboratory (TecLab) at Utrecht University (NL) as an analogue for brittle layers in the crust or lithosphere. Detailed information about the data, methodology and a list of files and formats is given in the data description and list of files that are included in the zip folder and also available via the DOI landing page. The material has been characterized by means of internal friction coefficient and cohesion as a remote service by GFZ Potsdam for TecLab (Utrecht University). According to our analysis the material behaves as a Mohr-Coulomb material characterized by a linear failure envelope and peak, dynamic and reactivation friction coefficients of 0.76, 0.60, and 0.66, respectively. Cohesions are in the order of few tens of Pa. A minor rate-weakening of 3% per ten-fold rate change is evident.
# 9
Dietze, Michael
Abstract: Environmental seismoloy is a scientific field that studies the seismic signals, emitted by Earth surface processes. This R package eseis provides all relevant functions to read/write seismic data files, prepare, analyse and visualise seismic data, and generate reports of the processing history. eseis contains a growing set of function to handle the complete workflow of environmental seismology, i.e., the scientific field that studies the seismic signals that are emitted by Earth surface processes. The package supports reading the two most common seismic data formats, general functions for preparational and analytical signal processing aswell as specified functions for handling signals generated by Earth surface processes. Finally, graphical plot functions are provided, too. The software package contains 51 functions and two example data sets (eseis-supplementary_material.zip). It makes use of a series of dependency packages described in the DESCRIPTION file of the package.
# 10
Brunke, Heinz-Peter
Abstract: This data publication includes a matlab software package as described in Brunke (2017). In addition to the Matlab software, we provide three test dataset from the Niemegk magnetic observatories (NGK). We present a numerical method, allowing for the evaluation of an arbitrary number (minimum 5 as there are 5 independent parameters) of telescope orientations. The traditional measuring schema uses a fixed number of eight orientations (Jankowski et al, 1996). Our method provides D, I and Z base values and calculated uncertitudes of them. A general approach has significant advantages. Additional measurements may by seamlessly incorporate for higher accuracy. Individual erroneous readings are identified and can be discarded without invalidating the entire data set, a-priory information can be incorporated. We expect the general method to ease requirements also for automated DI-flux measurements. The method can reveal certain properties of the DI-theodolite, which are not captured by the conventional method. Based on the alternative evaluation method, a new faster and less error prone measuring schema is presented. It avoids the need to calculate the magnetic meridian prior to the inclination measurements. Measurements in the vicinity of the magnetic equator become possible with theodolites without zenith ocular.
spinning wheel Loading next page